• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
LI Qi, LI Ruirui, LI Shuo, PU Yuchen, SUN Cai, CHEN Weirong. Control Method for Active Power in Electric-Hydrogen Hybrid Energy-Storage Microgrids[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 485-492, 518. doi: 10.3969/j.issn.0258-2724.20210506
Citation: LI Qi, LI Ruirui, LI Shuo, PU Yuchen, SUN Cai, CHEN Weirong. Control Method for Active Power in Electric-Hydrogen Hybrid Energy-Storage Microgrids[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 485-492, 518. doi: 10.3969/j.issn.0258-2724.20210506

Control Method for Active Power in Electric-Hydrogen Hybrid Energy-Storage Microgrids

doi: 10.3969/j.issn.0258-2724.20210506
  • Received Date: 22 Jun 2021
  • Rev Recd Date: 22 Jan 2022
  • Available Online: 13 Mar 2024
  • Publish Date: 31 Mar 2022
  • In an AC system with parallel operation of electricity-hydrogen micro-grids, when adopting traditional control methods, the difference in output line impedance will affect inverters, and large circulating currents occurs such that a reasonable distribution of active power become inaccessible. Given the relationship between the voltage deviation and the active power, the active power distribution between multiple micro-grids is analyzed. Firstly, the AC system model of the electric-hydrogen hybrid energy-storage micro-grid is constructed, including photovoltaic, battery, fuel cell, and electrolyzer. Secondly, following the relationship between the active power and the voltage in the reverse droop control, a reverse droop control based on power following control is proposed to work out voltage deviation and auto-adjust the rated active power. Finally, within a parallel operation of electric-hydrogen micro-grids, the proposed method is compared with other methods and is verified by hardware-in-the-loop experiments on the platform of RT-LAB. The experimental results show that the proposed method outperforms other methods: the accuracy of power distribution after stabilization is 97.50%, the accuracy of the bus voltage is 99.86%, and the circulating current mostly ranges in [−3.0, 3.0] A.

     

  • loading
  • [1]
    李霞林,郭力,王成山,等. 直流微电网关键技术研究综述[J]. 中国电机工程学报,2016,36(1): 2-17.

    LI Xialin, GUO Li, WANG Chengshan, et al. Key technologies of DC microgrids: an overview[J]. Proceedings of the CSEE, 2016, 36(1): 2-17.
    [2]
    LI Q, QIU Y, YANG H, et al. Stability-constrained two-stage robust optimization for integrated hydrogen hybrid energy system[J]. CSEE Journal of Power and Energy Systems, 2021, 7(1): 162-171.
    [3]
    刘欣博,刘宁,宋晓通,等. 基于交流恒功率负载特性的交直流混合微电网系统大信号稳定性判据[J]. 高电压技术,2021,47(10): 3441-3451.

    LIU Xinbo, LIU Ning, SONG Xiaotong, et al. Large-signal stability criteria of AC/DC hybrid microgrid based on AC constant power loads[J]. High Voltage Engineering, 2021, 47(10): 3441-3451.
    [4]
    蔡国伟,孔令国,薛宇,等. 风氢耦合发电技术研究综述[J]. 电力系统自动化,2014,38(21): 127-135. doi: 10.7500/AEPS20131231004

    CAI Guowei, KONG Lingguo, XUE Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-135. doi: 10.7500/AEPS20131231004
    [5]
    EHSAN A, YANG Q. Optimal integration and planning of renewable distributed generation in the power distribution networks: a review of analytical techniques[J]. Applied Energy, 2018, 210: 44-59. doi: 10.1016/j.apenergy.2017.10.106
    [6]
    李奇,蒲雨辰,韩莹,等. 电-氢孤岛直流微电网的分层能量管理[J]. 西南交通大学学报,2020,55(5): 912-919.

    LI Qi, PU Yuchen, HAN Ying, et al. Hierarchical energy management for electric-hydrogen island direct current micro-grid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 912-919.
    [7]
    米阳,陈鑫,季亮,等. 基于虚拟额定电流的直流微电网分布式储能单元精确电流分配研究[J]. 电网技术,2020,44(3): 823-835.

    MI Yang, CHEN Xin, JI Liang, et al. Accurate current sharing of distributed energy storage units in DC microgrid based on virtual rated current[J]. Power System Technology, 2020, 44(3): 823-835.
    [8]
    朱晓荣,韩丹慧,孟凡奇,等. 提高直流微电网稳定性的并网换流器串联虚拟阻抗方法[J]. 电网技术,2019,43(12): 4523-4531.

    ZHU Xiaorong, HAN Danhui, MENG Fanqi, et al. Grid converter series virtual impedance method for improving DC microgrid stability[J]. Power System Technology, 2019, 43(12): 4523-4531.
    [9]
    柴秀慧,张纯江,柴建国,等. 改进互联通信荷电状态下垂控制及功率均衡优化[J]. 电工技术学报,2021,36(16): 3365-3374.

    CHAI Xiuhui, ZHANG Chunjiang, CHAI Jianguo, et al. Improved interconnected communication state of charge droop control and power balance optimization[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3365-3374.
    [10]
    王晓寰,王书光,刘聪哲,等. 下垂控制并联系统中功率精确分配的控制策略[J]. 电力电子技术,2019,53(8): 4-7.

    WANG Xiaohuan, WANG Shuguang, LIU Congzhe, et al. Accurate power sharing strategy for parallel system based on droop control[J]. Power Electronics, 2019, 53(8): 4-7.
    [11]
    麦倩屏,陈鸣. 用于多微源低压微电网的虚拟阻抗反下垂控制[J]. 电力系统保护与控制,2018,46(1): 96-102. doi: 10.7667/PSPC162039

    MAI Qianping, CHEN Ming. P-V/Q-f droop control strategy with virtual impedance for low-voltage microgrid with multiple micro sources[J]. Power System Protection and Control, 2018, 46(1): 96-102. doi: 10.7667/PSPC162039
    [12]
    白小丹,苗虹,曾成碧,等. 适用于低压微网中逆变器无功均分的改进下垂控制策略[J]. 高电压技术,2020,46(4): 1310-1318.

    BAI Xiaodan, MIAO Hong, ZENG Chengbi, et al. Improved droop control strategy for reactive power sharing of inverters in low-voltage microgrids[J]. High Voltage Engineering, 2020, 46(4): 1310-1318.
    [13]
    PU Y C, LI Q, CHEN W R, et al. Hierarchical energy management control for islanding DC microgrid with electric-hydrogen hybrid storage system[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5153-5161. doi: 10.1016/j.ijhydene.2018.10.043
    [14]
    LI L Y, CHEN W R, HAN Y, et al. A stability enhancement method based on adaptive virtual resistor for electric-hydrogen hybrid DC microgrid grid-connected inverter under weak grid[J]. Electric Power Systems Research, 2021, 191: 106882.1-106882.
    [15]
    LI Q, WANG T H, DAI C H, et al. Power management strategy based on adaptive droop control for a fuel cell-battery-supercapacitor hybrid tramway[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5658-5670. doi: 10.1109/TVT.2017.2715178
    [16]
    IPSAKIS D, VOUTETAKIS S, SEFERLIS P, et al. Power management strategies for a stand-alone power system using renewable energy sources and hydrogen storage[J]. International Journal of Hydrogen Energy, 2009, 34(16): 7081-7095. doi: 10.1016/j.ijhydene.2008.06.051
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views(209) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return