Citation: | LI Qi, ZOU Xueli, PU Yuchen, CHEN Weirong, ZHAO Shudan. Optimal Schedule of Combined Heat-Power Microgrid Based on Hydrogen Energy Storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 9-21. doi: 10.3969/j.issn.0258-2724.20210348 |
According to the cogeneration characteristics of proton exchange membrane fuel cell and electrolyzer, in order to avoid the waste of heat energy in the hydrogen energy system and further improve the system efficiency, a combined heat
[1] |
ZHU D F, YANG B, LIU Q, et al. Energy trading in microgrids for synergies among electricity, hydrogen and heat networks[J]. Applied Energy, 2020, 272: 115225. doi: 10.1016/j.apenergy.2020.115225
|
[2] |
李奇,蒲雨辰,韩莹,等. 电-氢孤岛直流微电网的分层能量管理[J]. 西南交通大学学报,2020,55(5): 912-919.
LI Qi, PU Yuchen, HAN Ying, et al. Hierarchical energy management of electricity-hydrogen island DC microgrid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 912-919.
|
[3] |
李奇,赵淑丹,蒲雨辰,等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报,2021,36(3): 486-495.
LIQi, ZHAO Shudan, PU Yuchen, et al. Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495.
|
[4] |
NADERIPOUR A, ABDUL-MALEK Z, NOWDEH S A, et al. Optimal allocation for combined heat and power system with respect to maximum allowable capacity for reduced losses and improved voltage profile and reliability of microgrids considering loading condition[J]. Energy, 2020, 196: 117124.1-117124.13.
|
[5] |
王丹,黄德裕,胡庆娥,等. 基于电-热联合市场出清的综合需求响应建模及策略[J]. 电力系统自动化,2020,44(12): 13-21. doi: 10.7500/AEPS20191220007
WANG Dan, HUANG Deyu, HU Qing ’e, et al. Modeling and strategy of integrated demand response based on joint electricity-heat clearing market[J]. Automation of Electric Power Systems, 2020, 44(12): 13-21. doi: 10.7500/AEPS20191220007
|
[6] |
杨冬锋,姜超,蔡国伟,等. 考虑电热耦合的交直流微电网多目标优化配置[J]. 电力系统自动化,2020,44(8): 124-132.
YANG Dongfeng, JIANG Chao, CAI Guowei, et al. Multi-objective optimization configuration of AC/DC microgrid considering electro-thermal coupling[J]. Automation of Electric Power Systems, 2020, 44(8): 124-132.
|
[7] |
BORNAPOUR M, HOOSHMAND R A, KHODABAKHSHIAN A, et al. Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage[J]. Applied Energy, 2017, 202: 308-322. doi: 10.1016/j.apenergy.2017.05.133
|
[8] |
王丹,智云强,贾宏杰,等. 基于多能源站协调的区域电力-热力系统日前经济调度[J]. 电力系统自动化,2018,42(13): 59-67. doi: 10.7500/AEPS20171129003
WANG Dan, ZHI Yunqiang, JIA Hongjie, et al. Day-ahead economic dispatch strategy of regional electricity-heating integrated energy system based on multiple energy stations[J]. Automation of Electric Power Systems, 2018, 42(13): 59-67. doi: 10.7500/AEPS20171129003
|
[9] |
靳小龙,穆云飞,贾宏杰,等. 集成智能楼宇的微网系统多时间尺度模型预测调度方法[J]. 电力系统自动化,2019,43(16): 25-33. doi: 10.7500/AEPS20180629016
JIN Xiaolong, MU Yunfei, JIA Hongjie, et al. Model predictive control based multiple-time-scheduling method for microgrid system with smart buildings integrated[J]. Automation of Electric Power Systems, 2019, 43(16): 25-33. doi: 10.7500/AEPS20180629016
|
[10] |
JIN X L, WU J Z, MU Y F, et al. Hierarchical microgrid energy management in an office building[J]. Applied Energy, 2017, 208: 480-494. doi: 10.1016/j.apenergy.2017.10.002
|
[11] |
AGHAEI J, ALIZADEH M I. Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)[J]. Energy, 2013, 55: 1044-1054. doi: 10.1016/j.energy.2013.04.048
|
[12] |
GUO X G, BAO Z J, LAI H J, et al. Model predictive control considering scenario optimisation for microgrid dispatching with wind power and electric vehicle[J]. The Journal of Engineering, 2017, 2017(13): 2539-2543. doi: 10.1049/joe.2017.0785
|
[13] |
YANG H M, PAN H, LUO F J, et al. Operational planning of electric vehicles for balancing wind power and load fluctuations in a microgrid[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 592-604. doi: 10.1109/TSTE.2016.2613941
|
[14] |
吴鸣,骆钊,季宇,等. 基于模型预测控制的冷热电联供型微网动态优化调度[J]. 中国电机工程学报,2017,37(24): 7174-7184.
WU Ming, LUO Zhao, JI Yu, et al. Model predictive control based dynamic optimal scheduling for cooling, heating and power microgrid[J]. Proceedings of the CSEE, 2017, 37(24): 7174-7184.
|
[15] |
GU W, WANG Z H, WU Z, et al. An online optimal dispatch schedule for CCHP microgrids based on model predictive control[J]. 2017 IEEE Power & Energy Society General Meeting, 2017, 8(5): 2332-2342.
|
[16] |
陈维荣,于瑾,李奇,等. 电-氢多能互补型微电网的VSG平衡电流控制方法[J]. 西南交通大学学报,2019,54(6): 1323-1331. doi: 10.3969/j.issn.0258-2724.20180860
CHEN Weirong, YU Jin, LI Qi, et al. Balanced current control method for virtual synchronous generator in electro-hydrogen multi-energy complementary microgrid[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1323-1331. doi: 10.3969/j.issn.0258-2724.20180860
|
[17] |
孔令国,蔡国伟,李龙飞,等. 风光氢综合能源系统在线能量调控策略与实验平台搭建[J]. 电工技术学报,2018,33(14): 3371-3384. doi: 10.19595/j.cnki.1000-6753.tces.170597
KONG Lingguo, CAI Guowei, LI Longfei, et al. Online energy control strategy and experimental platform of integrated energy system of wind, photovoltaic and hydrogen[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3371-3384. doi: 10.19595/j.cnki.1000-6753.tces.170597
|
[18] |
蒲雨辰,李奇,陈维荣,等. 计及最小使用成本及储能状态平衡的电-氢混合储能孤岛直流微电网能量管理[J]. 电网技术,2019,43(3): 918-927. doi: 10.13335/j.1000-3673.pst.2018.1528
PU Yuchen, LI Qi, CHEN Weirong, et al. Energy management for islanded DC microgrid with hybrid electric-hydrogen energy storage system based on minimum utilization cost and energy storage state balance[J]. Power System Technology, 2019, 43(3): 918-927. doi: 10.13335/j.1000-3673.pst.2018.1528
|
[19] |
LI J R, LIN J, SONG Y H, et al. Operation optimization of power to hydrogen and heat (P2HH) in ADN coordinated with the district heating network[J]. IEEE Transactions on Sustainable Energy, 2019, 10(4): 1672-1683. doi: 10.1109/TSTE.2018.2868827
|
[20] |
PASHAEI-DIDANI H, NOJAVAN S, NOUROLLAHI R, et al. Optimal economic-emission performance of fuel cell/CHP/storage based microgrid[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6896-6908. doi: 10.1016/j.ijhydene.2019.01.201
|
[21] |
随权,马啸,魏繁荣,等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报,2019,39(6): 1603-1613, 1857.
SUI Quan, MA Xiao, WEI Fanrong, et al. Day-ahead dispatching optimization strategy for energy network considering fuel cell thermal-electric comprehensive utilization[J]. Proceedings of the CSEE, 2019, 39(6): 1603-1613, 1857.
|
[22] |
HU Q, LIN J, ZENG Q, et al. Optimal control of a hydrogen microgrid based on an experiment validated P2HH model[J]. IET Renewable Power Generation, 2020, 14(3): 364-371. doi: 10.1049/iet-rpg.2019.0544
|
[23] |
丁明,王波,赵波,等. 独立风光柴储微网系统容量优化配置[J]. 电网技术,2013,37(3): 575-581. doi: 10.13335/j.1000-3673.pst.2013.03.002
DING Ming, WANG Bo, ZHAO Bo, et al. Configuration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgrid[J]. Power System Technology, 2013, 37(3): 575-581. doi: 10.13335/j.1000-3673.pst.2013.03.002
|
[24] |
熊焰,吴杰康,王强,等. 风光气储互补发电的冷热电联供优化协调模型及求解方法[J]. 中国电机工程学报,2015,35(14): 3616-3625.
XIONG Yan, WU Jiekang, WANG Qiang, et al. An optimization coordination model and solution for combined cooling, heating and electric power systems with complimentary generation of wind, PV, gas and energy storage[J]. Proceedings of the CSEE, 2015, 35(14): 3616-3625.
|
[25] |
LI Q, CHEN W R, LIU Z X, et al. Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway[J]. Journal of Power Sources, 2015, 279: 267-280. doi: 10.1016/j.jpowsour.2014.12.042
|
[26] |
ERGEN T, KOZAT S S. Online training of LSTM networks in distributed systems for variable length data sequences[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 5159-5165. doi: 10.1109/TNNLS.2017.2770179
|
[27] |
MA H W, ZHANG D Q. A grey forecasting model for coal production and consumption[C]//2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009). Nanjing: IEEE, 2009: 512-516.
|