• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
JIANG Haifan, DING Guofu, XIAO Tong, FAN Mengjie, FU Jianlin, ZHANG Jian. Digital Twin Evolution Model and Its Applications in Intelligent Manufacturing[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1386-1394. doi: 10.3969/j.issn.0258-2724.20210202
Citation: JIANG Haifan, DING Guofu, XIAO Tong, FAN Mengjie, FU Jianlin, ZHANG Jian. Digital Twin Evolution Model and Its Applications in Intelligent Manufacturing[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1386-1394. doi: 10.3969/j.issn.0258-2724.20210202

Digital Twin Evolution Model and Its Applications in Intelligent Manufacturing

doi: 10.3969/j.issn.0258-2724.20210202
  • Received Date: 23 Mar 2021
  • Rev Recd Date: 21 Jun 2021
  • Available Online: 20 Oct 2022
  • Publish Date: 06 Jul 2021
  • As a key enabling technology for the cyber-physical fusion of intelligent manufacturing, the digital twin has drawn extensive concern. And how to build a digital twin model has become a current research hotspot. At present, digital twin models are mostly focused on conceptual abstraction or specific engineering applications, and seldom consider how to construct and apply digital twin models step by step from the perspective of construction methods and processes. Therefore, this paper proposed the digital twin evolution model (DTEM), which divides the construction and application process of the digital twin into three evolution stages, namely digital model, digital shadow, and digital twin. Then, the application methods, key technologies and tool platforms of each evolution stage were discussed. And the typical applications of DTEM were explored, including intelligent equipment, intelligent production, and intelligent operation and maintenance. The applications show that the proposed model provides a feasible technical route and useful application reference for the step-by-step implementation of digital twins in intelligent manufacturing.

     

  • [1]
    TAO F, ZHANG M. Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing[J]. IEEE Access, 2017, 5: 20418-20427. doi: 10.1109/ACCESS.2017.2756069
    [2]
    DING K, CHAN F T S, ZHANG X D, et al. Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors[J]. International Journal of Production Research, 2019, 57(20): 6315-6334. doi: 10.1080/00207543.2019.1566661
    [3]
    TAO F, ZHANG M, LIU Y S, et al. Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals, 2018, 67(1): 169-172. doi: 10.1016/j.cirp.2018.04.055
    [4]
    陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1): 1-18.

    TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
    [5]
    BAO J S, GUO D S, LI J, et al. The modelling and operations for the digital twin in the context of manufacturing[J]. Enterprise Information Systems, 2019, 13(4): 534-556. doi: 10.1080/17517575.2018.1526324
    [6]
    CECIL J, ALBUHAMOOD S, CECIL-XAVIER A, et al. An advanced cyber physical framework for micro devices assembly[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 92-106. doi: 10.1109/TSMC.2017.2733542
    [7]
    JIANG H F, QIN S F, FU J L, et al. How to model and implement connections between physical and virtual models for digital twin application[J]. Journal of Manufacturing Systems, 2021, 58: 36-51. doi: 10.1016/j.jmsy.2020.05.012
    [8]
    KRITZINGER W, KARNER M, TRAAR G, et al. Digital twin in manufacturing: a categorical literature review and classification[J]. IFAC-PapersOnLine, 2018, 51(11): 1016-1022. doi: 10.1016/j.ifacol.2018.08.474
    [9]
    江海凡,丁国富,张剑. 数字孪生车间演化机理及运行机制[J]. 中国机械工程,2020,31(7): 824-832, 841. doi: 10.3969/j.issn.1004-132X.2020.07.008

    JIANG Haifan, DING Guofu, ZHANG Jian. Evolution and operation mechanism of digital twin shopfloors[J]. China Mechanical Engineering, 2020, 31(7): 824-832, 841. doi: 10.3969/j.issn.1004-132X.2020.07.008
    [10]
    QI Q L, TAO F, ZUO Y, et al. Digital twin service towards smart manufacturing[J]. Procedia CIRP, 2018, 72: 237-242. doi: 10.1016/j.procir.2018.03.103
    [11]
    赵颖,侯俊杰,于成龙,等. 面向生产管控的工业大数据研究及应用[J]. 计算机科学,2019,46(增1): 45-51.

    ZHAO Ying, HOU Junjie, YU Chenglong, et al. Study and application of industrial big data in production management and control[J]. Computer Science, 2019, 46(S1): 45-51.
    [12]
    陈建. 通用五轴数控加工仿真系统研发[D]. 成都: 西南交通大学, 2014.
    [13]
    肖通,江海凡,丁国富,等. 五轴磨床数字孪生建模与监控研究[J]. 系统仿真学报,2021,33(12): 2880-2890.

    XIAO Tong, JIANG Haifan, DING Guofu, et al. Research on digital twin-based modeling and monitoring of five-axis grinder[J]. Journal of System Simulation, 2021, 33(12): 2880-2890.
    [14]
    骆伟超. 基于Digital Twin的数控机床预测性维护关键技术研究[D]. 济南: 山东大学, 2020.
    [15]
    丁国富, 江海凡, 罗樟圳, 等. 一种任务车间生产计划验证方法: CN110989527A[P]. 2020-04-10.
    [16]
    罗樟圳,江海凡,付建林,等. 基于组合赋权的离散车间生产计划综合评价[J]. 系统仿真学报,2021,33(8): 1856-1865.

    LUO Zhangzhen, JIANG Haifan, FU Jianlin, et al. Combination weighting-based comprehensive evaluation for discrete workshop production plan[J]. Journal of System Simulation, 2021, 33(8): 1856-1865.
  • Relative Articles

    [1]ZHU Qing, ZHAO Yuanzhen, GUO Yongxin, DING Yulin, WANG Qiang, PAN Yan, CHEN Junhua, ZHANG Liguo. Distributed Management Method for Geographic and Geological Knowledge Base for Railway Digital Twin[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230389
    [2]DING Guofu, LIU Mingyuan, XIE Jiaxiang, ZHANG Jian, ZHANG Haizhu, ZHENG Qing. Collaborative Computing Method for Highly Available Operation of Digital Twin Manufacturing Equipment[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 194-204. doi: 10.3969/j.issn.0258-2724.20230074
    [3]XU Fengqiu, QIU Yi, HE Jiawen, XU Xianze. Remanence Compensation of Maglev Planar Motor Based on Digital Twin Model[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1050-1059. doi: 10.3969/j.issn.0258-2724.20240556
    [4]DING Guofu, HE Xu, ZHANG Haizhu, LI Rong, WANG Shuaihu. Application and Challenges of Digital Twin in Life Cycle of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 58-73. doi: 10.3969/j.issn.0258-2724.20210573
    [5]JIANG Qilong, LIANG Da, YAN Feng. Application of Digital One-Cycle Control for Current in Electromagnetic Suspension System[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 1-8, 22. doi: 10.3969/j.issn.0258-2724.20170771
    [6]LIU Yamin, HAN Sen, XU Ouming. Acquisition System for Three-Dimensional Surface Texture of Asphalt Pavement Based on Digital Image Processing[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 351-357. doi: 10.3969/j.issn.0258-2724.2014.02.025
    [7]LU Heng, LI Yong-Shu, LI He-Chao, HE Jing, REN Zhi-Ming. Digital Processing of Unmanned Aerial Vehicle Image and Its Application in Reconstruction of Wenchuan Earthquake-Hit Areas[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 533-538. doi: 10. 3969/ j. issn. 0258-2724.
    [8]TANG Zhihui, ZUO Tingliang, ZHOU Meiyu. Application of Vehicle Driving Simulators in Traffic Engineering[J]. Journal of Southwest Jiaotong University, 2006, 19(5): 630-634.
    [9]ZHANG Jin, ZHU Wei, HE Meiling. Method and Application of Traffic Impact Analysis for Logistics Implant[J]. Journal of Southwest Jiaotong University, 2006, 19(5): 582-588.
    [10]YANG Yong-chong, GUO Da-zhi. M easurementM odel ofDigitalM aps Based on Geographic Coordinates[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 318-321.
    [11]YISi-rong, L Xi-kui, ZHANG Jia-ling. M odelingM ethod for Large Strip DigitalTerrainM odel[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 308-312.
    [12]QUPeng-ju. BilevelProgramm ingM odel for C ity Road Network Planning and ItsApplication[J]. Journal of Southwest Jiaotong University, 2005, 18(6): 793-797.
    [13]XUGao. Simulation Model for Crowd Evacuation Based on Agent Technology[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 301-303.
    [14]LIUHui-min, LIU Wei-hua. Model for Attractive Area of Urban Rail Transit Stations and Its Algorithm[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 482-485.
    [15]LI Fu, ZHANG Li-ping, HUANG Yun-hua. The Development and Prospect of Application of Light Rail Vehicles[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 111-116.
  • Cited by

    Periodical cited type(17)

    1. 范帅,相茂利,张恩亮. 数字孪生技术在智能制造领域中的应用. 造纸装备及材料. 2024(04): 86-88 .
    2. 刘秋鹏. 基于模块化与标准化的非标自动化车灯生产系统研发. 汽车制造业. 2024(03): 59-62 .
    3. Lei Zhang,Jianhua Liu,Cunbo Zhuang. Digital Twin Modeling Enabled Machine Tool Intelligence:A Review. Chinese Journal of Mechanical Engineering. 2024(02): 46-71 .
    4. 王頲,杨震,赵洋,罗顺,刘为斌,禄盛. 大型发电机端部绕组电磁力物理数字孪生建模. 计算机集成制造系统. 2024(09): 2998-3018 .
    5. 陈大勇,张野,宋鸿武,李旺,王松伟,刘劲松,陈传来. 数字化技术在精密铜管材智能制造中的应用. 铜业工程. 2024(06): 41-53 .
    6. 林国义,郭慧妍,冷杰武,赵慧. 数字孪生在工业工程领域应用的热点和趋势分析. 工业工程. 2024(06): 13-25 .
    7. 林立友,王汉熙. 新一代信息技术产业及其关键技术支撑. 武汉理工大学学报. 2023(01): 110-121 .
    8. 潘帅,于正林. 基于数字孪生的光纤绕线机实时监控方法研究. 现代制造工程. 2023(04): 124-129 .
    9. 郑孟蕾,田凌. 基于区块链的机械产品数字孪生本体模型协同演进方法. 计算机集成制造系统. 2023(06): 1781-1794 .
    10. 冶运涛,蒋云钟,寇怀忠,顾晶晶,董甲平,黄建雄,关昊哲. 数字孪生流域的基础模型、演化路径与评判准则. 华北水利水电大学学报(自然科学版). 2023(04): 27-38+46 .
    11. 刘芳,刘琪,黄美晨,常丽娟,王晓晖,赵玲,田枫. 数字孪生:跨界赋能于多领域智能的新应用. 计算机系统应用. 2023(08): 31-41 .
    12. 王大江,张学东,孙文磊,姜任奔,路程,岳媛. 特种变压器生产车间数字孪生系统构建方法. 工程科学学报. 2023(11): 1948-1961 .
    13. 王力霆,唐兆,胡玉炜,李岳洪. 面向数字孪生的列车脱轨试验监控系统研究. 现代制造工程. 2023(09): 122-129 .
    14. 韩涛,郭曦. 从文化孪生到技术孪生再到数字孪生——基于大历史观的数字孪生城市逻辑考察. 上海城市规划. 2023(05): 31-35 .
    15. 朱静,赵静欣. 质子交换膜燃料电池系统数字孪生故障诊断模型研究. 控制理论与应用. 2022(03): 527-534 .
    16. 王亚彬,王帅,王金帼. 数字孪生应用于维修器材保障的SWOT战略分析. 国防科技. 2022(03): 1-8 .
    17. 唐利民. 路基路面工程实体结构数字孪生模型构建技术与方法. 公路. 2022(12): 1-9 .

    Other cited types(20)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-070255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 46.3 %FULLTEXT: 46.3 %META: 44.1 %META: 44.1 %PDF: 9.6 %PDF: 9.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.3 %其他: 15.3 %其他: 0.7 %其他: 0.7 %San Jose: 0.0 %San Jose: 0.0 %San Lorenzo: 0.1 %San Lorenzo: 0.1 %Warichaphum: 0.1 %Warichaphum: 0.1 %[]: 0.1 %[]: 0.1 %上海: 2.7 %上海: 2.7 %东方: 0.2 %东方: 0.2 %东莞: 0.6 %东莞: 0.6 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %保定: 0.1 %保定: 0.1 %信阳: 0.0 %信阳: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.5 %兰州: 0.5 %内江: 0.1 %内江: 0.1 %北京: 6.5 %北京: 6.5 %十堰: 0.6 %十堰: 0.6 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 1.1 %南京: 1.1 %南宁: 0.0 %南宁: 0.0 %南昌: 0.4 %南昌: 0.4 %南通: 0.2 %南通: 0.2 %南阳: 0.0 %南阳: 0.0 %厦门: 0.2 %厦门: 0.2 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %呵叻: 0.0 %呵叻: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.5 %嘉兴: 0.5 %大同: 0.1 %大同: 0.1 %大庆: 0.1 %大庆: 0.1 %天津: 2.8 %天津: 2.8 %太原: 0.5 %太原: 0.5 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 1.3 %宣城: 1.3 %山东省: 0.0 %山东省: 0.0 %山景城: 0.1 %山景城: 0.1 %岳阳: 0.0 %岳阳: 0.0 %常州: 0.3 %常州: 0.3 %常德: 0.0 %常德: 0.0 %平顶山: 0.2 %平顶山: 0.2 %广州: 0.7 %广州: 0.7 %张家口: 0.5 %张家口: 0.5 %徐州: 0.2 %徐州: 0.2 %德州: 0.1 %德州: 0.1 %成都: 2.1 %成都: 2.1 %扬州: 2.1 %扬州: 2.1 %抚顺: 0.0 %抚顺: 0.0 %揭阳: 0.0 %揭阳: 0.0 %攀枝花: 0.0 %攀枝花: 0.0 %新余: 0.0 %新余: 0.0 %无锡: 0.3 %无锡: 0.3 %昆明: 0.2 %昆明: 0.2 %景德镇: 0.1 %景德镇: 0.1 %朔州: 0.0 %朔州: 0.0 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.3 %杭州: 1.3 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.1 %桂林: 0.1 %武汉: 1.4 %武汉: 1.4 %池州: 0.1 %池州: 0.1 %沈阳: 1.0 %沈阳: 1.0 %泰州: 0.0 %泰州: 0.0 %泸州: 0.0 %泸州: 0.0 %洛阳: 0.7 %洛阳: 0.7 %济南: 0.2 %济南: 0.2 %济宁: 0.1 %济宁: 0.1 %淄博: 0.3 %淄博: 0.3 %淮安: 0.0 %淮安: 0.0 %深圳: 0.3 %深圳: 0.3 %清远: 0.1 %清远: 0.1 %温州: 1.8 %温州: 1.8 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 5.1 %漯河: 5.1 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.0 %烟台: 0.0 %珠海: 0.0 %珠海: 0.0 %益阳: 0.0 %益阳: 0.0 %盐城: 0.0 %盐城: 0.0 %石家庄: 2.6 %石家庄: 2.6 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.0 %绵阳: 0.0 %聊城: 0.1 %聊城: 0.1 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 12.8 %芒廷维尤: 12.8 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.6 %苏州: 0.6 %苏拉卡尔塔: 0.0 %苏拉卡尔塔: 0.0 %荆州: 0.1 %荆州: 0.1 %荆门: 0.1 %荆门: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %萍乡: 0.0 %萍乡: 0.0 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 11.5 %西宁: 11.5 %西安: 0.8 %西安: 0.8 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.5 %运城: 0.5 %邯郸: 0.4 %邯郸: 0.4 %邵阳: 0.0 %邵阳: 0.0 %郑州: 1.0 %郑州: 1.0 %重庆: 0.7 %重庆: 0.7 %铜陵: 0.1 %铜陵: 0.1 %镇江: 0.3 %镇江: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 4.9 %长沙: 4.9 %阜阳: 0.2 %阜阳: 0.2 %阿尔泽特河畔埃施: 0.1 %阿尔泽特河畔埃施: 0.1 %青岛: 2.2 %青岛: 2.2 %首尔特别: 0.1 %首尔特别: 0.1 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.2 %马鞍山: 0.2 %黄山: 0.1 %黄山: 0.1 %其他其他San JoseSan LorenzoWarichaphum[]上海东方东莞临汾丹东保定信阳六安兰州内江北京十堰华盛顿州南京南宁南昌南通南阳厦门台州合肥呵叻呼和浩特哈尔滨哥伦布嘉兴大同大庆天津太原威海宁波安康宣城山东省山景城岳阳常州常德平顶山广州张家口徐州德州成都扬州抚顺揭阳攀枝花新余无锡昆明景德镇朔州朝阳杭州格兰特县桂林武汉池州沈阳泰州泸州洛阳济南济宁淄博淮安深圳清远温州湖州湘潭漯河潍坊烟台珠海益阳盐城石家庄福州秦皇岛纽约绍兴绵阳聊城舟山芒廷维尤芝加哥苏州苏拉卡尔塔荆州荆门莫斯科萍乡衡水衡阳衢州西宁西安西雅图诺沃克贵阳运城邯郸邵阳郑州重庆铜陵镇江长春长沙阜阳阿尔泽特河畔埃施青岛首尔特别香港香港特别行政区马鞍山黄山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(907) PDF downloads(195) Cited by(37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return