• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
WANG Yin, WANG Lide, QIU Ji. Real-Time Enhancement Algorithm Based on DenseNet Structure for Railroad Low-Light Environment[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1349-1357. doi: 10.3969/j.issn.0258-2724.20210199
Citation: WANG Yin, WANG Lide, QIU Ji. Real-Time Enhancement Algorithm Based on DenseNet Structure for Railroad Low-Light Environment[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1349-1357. doi: 10.3969/j.issn.0258-2724.20210199

Real-Time Enhancement Algorithm Based on DenseNet Structure for Railroad Low-Light Environment

doi: 10.3969/j.issn.0258-2724.20210199
  • Received Date: 17 Mar 2021
  • Rev Recd Date: 09 Jun 2021
  • Available Online: 05 Aug 2022
  • Publish Date: 08 Sep 2021
  • Train on-board vision system is an important guarantee for the safety of future urban rail transit operations. The detection effect of the on-board vision system will be seriously affected by the low-light environment when the train operates in a closed environment or at night. To this end, a real-time visual enhancement algorithm is proposed for low-light images in a closed railway environment or night driving environment. The algorithm uses a densely connected network (DenseNet) structure as the backbone network to establish a feature-size invariant network. The network extracts image illumination, color, and other information and predicts the light enhancement rate images. These rate maps adjust the light intensity of each pixel on the basis of the nonlinear mapping function. The network enhances the exposure rate of low-light input images through a hierarchical structure from low level to high level. The developed deep learning network model uses self-supervised learning to train the network parameters. The chracteristics of the low-light image and the prior knowledge are utilized to construct the loss function, which consist of three components: exposure loss, colour constancy loss and illumination smoothness loss. The experimental results of low-light enhancement in multiple scenes show that the algorithm can adapt to the exposure value of input images, dynamically adjust the exposure rate for low-exposure and high-exposure regions to improve the visualization of low-light images, and the processing speed can reach 160 fps to meet the requirements of real-time processing. The comparative experiments of railroad segmentation and pedestrian detection before and after low-light enhancement prove that the proposed algorithm can improve the visual detection in a low-light environment. As for testing on the RSDS (railroad segmentation dataset) datasets, the F-value of railroad segmentation is increased by more than 5%, and the false detection rate and missed detection rate of pedestrians in multiple railroad scenes are effectively reduced.

     

  • loading
  • [1]
    董昱,郭碧. 基于Hu不变矩特征的铁路轨道识别检测算法[J]. 铁道学报,2018,40(10): 64-70.

    DONG Yu, GUO Bi. Railway track detection algorithm based on Hu invariant moment feature[J]. Journal of the China Railway Society, 2018, 40(10): 64-70.
    [2]
    WANG Y, WANG L D, HU Y H, et al. RailNet:a segmentation network for railroad detection[J]. IEEE Access, 2019, 7: 143772-143779. doi: 10.1109/ACCESS.2019.2945633
    [3]
    王尧,余祖俊,朱力强,等. 基于高阶全连接条件随机场的高速铁路异物入侵检测方法[J]. 铁道学报,2019,41(5): 82-92.

    WANG Yao, YU Zujun, ZHU Liqiang, et al. Incursion detection method based on higher-order fully-connected conditional random fields[J]. Journal of the China Railway Society, 2019, 41(5): 82-92.
    [4]
    史红梅,柴华,王尧,等. 基于目标识别与跟踪的嵌入式铁路异物侵限检测算法研究[J]. 铁道学报,2015,37(7): 58-65.

    SHI Hongmei, CHAI Hua, WANG Yao, et al. Study on railway embedded detection algorithm for railway intrusion based on object recognition and tracking[J]. Journal of the China Railway Society, 2015, 37(7): 58-65.
    [5]
    王银,王立德,邱霁,等. 一种基于多层RBM网络和SVM的行人检测方法研究[J]. 铁道学报,2018,40(3): 95-100.

    WANG Yin, WANG Lide, QIU Ji, et al. Research on pedestrian detection method based on multilayer RBM network and SVM[J]. Journal of the China Railway Society, 2018, 40(3): 95-100.
    [6]
    REZA A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2004, 38(1): 35-44. doi: 10.1023/B:VLSI.0000028532.53893.82
    [7]
    CHEN S D, RAMLI A R. Minimum mean brightness error bi-histogram equalization in contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2003, 49(4): 1310-1319. doi: 10.1109/TCE.2003.1261234
    [8]
    LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108-128. doi: 10.1038/scientificamerican1277-108
    [9]
    LI M, LIU J, YANG W, et al. Joint Denoising and enhancement for low-light images via retinex model[C]//International Forum on Digitial TV and Wireless Multimedia Communications. Shanghai: [s.n.], 2017: 91-99.
    [10]
    LI M D, LIU J Y, YANG W H, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828-2841. doi: 10.1109/TIP.2018.2810539
    [11]
    LORE K G, AKINTAYO A, SARKAR S. LLNet:a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662. doi: 10.1016/j.patcog.2016.06.008
    [12]
    WEI C, WANG W J, YANG W H, et al. Deep retinex decomposition for low-light enhancement[DB/OL]. (2018-08-14). https://doi.org/10.48550/arXiv.1808.04560
    [13]
    CHEN C, CHEN Q F, XU J, et al. Learning to see in the dark[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3291-3300.
    [14]
    CAI J R, GU S H, ZHANG L. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018, 27: 2049-2062. doi: 10.1109/TIP.2018.2794218
    [15]
    JIANG Y F, GONG X Y, LIU D. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
    [16]
    HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2261-2269.
    [17]
    BUCHSBAUM G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 1980, 310(1): 1-26. doi: 10.1016/0016-0032(80)90058-7
    [18]
    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 3431-3440.
    [19]
    NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]//IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 1520-1528.
    [20]
    HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2980-2988.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views(284) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return