• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LIU Yicen, WU Guangning, GUO Yujun, LIU Yijie, WEI Wenfu, LEI Xiao, LI Peidong. Motion Characteristics Analysis of DC Arc on Arcing Horn[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 40-47. doi: 10.3969/j.issn.0258-2724.20210156
Citation: LIU Yicen, WU Guangning, GUO Yujun, LIU Yijie, WEI Wenfu, LEI Xiao, LI Peidong. Motion Characteristics Analysis of DC Arc on Arcing Horn[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 40-47. doi: 10.3969/j.issn.0258-2724.20210156

Motion Characteristics Analysis of DC Arc on Arcing Horn

doi: 10.3969/j.issn.0258-2724.20210156
  • Received Date: 02 Mar 2021
  • Rev Recd Date: 02 Aug 2021
  • Available Online: 09 Nov 2022
  • Publish Date: 21 Oct 2021
  • Grounding electrode line is an important part of the DC power transmission system, and it is a channel for the unbalanced current and the grounding current in the DC system. When the grounding electrode line is attacked by lightning, the grounding current will form a stable arc in the gap. Since the DC current has no periodic zero crossing point, the DC arc is difficult to extinguish, which damages the line insulation and seriously threatens the safety of the entire system. As the arcing horn of the grounding electrode line is in an open space, and the arc motion is affected by multi-field coupling, a two-dimensional simulation model of the arc horn based on magnetohydrodynamics is built to study the effects of the airflow velocity, direction and the structure of arcing horn on the DC arc motion. The results show that the arc is mainly driven by electromagnetic force and moves along the electrode. Through the arc blowing and stretching, the temperature is reduced, and the voltage is increased, which are beneficial to extinguishing arc. The airflow has a greater influence on the dynamic characteristics of the arc, and the wind speed in the same direction is beneficial to the blowing and dredging of the arc. At the same wind speed, the normal airflow plays a major role in the arc blowing. Electrode types have an important effect on the stretching of the arc. With the same gap distance, the double-horn electrode has a more significant stretching effect on the arc than the single-horn electrode. When the DC ground current is continuously injected, the arc is easy to reignite and difficult to extinguish completely.

     

  • loading
  • [1]
    刘振亚. 特高压交直流电网[M]. 北京: 中国电力出版社, 2013: 136-139.
    [2]
    杨刚,李恒超,谭蓓,等. 层次极限学习机用于高光谱图像预测绝缘子污秽度[J]. 西南交通大学学报,2020,55(3): 579-587. doi: 10.3969/j.issn.0258-2724.20190093

    YANG Gang, LI Hengchao, TAN Bei, et al. Application of hierarchical extreme learning machine in prediction of insulator pollution degree using hyperspectral images[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 579-587. doi: 10.3969/j.issn.0258-2724.20190093
    [3]
    刘守豹,皇甫成,余世峰,等. 特高压直流接地极线路过电压研究[J]. 高电压技术,2018,44(7): 2410-2417.

    LIU Shoubao, HUANGFU Cheng, YU Shifeng, et al. Study on overvoltage of UHV DC grounding line[J]. High Voltage Engineering, 2018, 44(7): 2410-2417.
    [4]
    郑扬亮,冉学彬,刘更生. 直流输电接地极线路招弧角有关问题的分析[J]. 高电压技术,2008,34(7): 1513-1516.

    ZHENG Yangliang, RAN Xuebin, LIU Gengsheng. Research on arcing horns of HVDC electrode lines[J]. High Voltage Engineering, 2008, 34(7): 1513-1516.
    [5]
    孙秋芹,周志成,刘洋,等. 特高压输电线路潜供电弧的燃弧特性[J]. 高电压技术,2014,40(12): 3895-3901.

    SUN Qiuqin, ZHOU Zhicheng, LIU Yang, et al. Arcing characteristics of secondary arc of UHV transmission lines[J]. High Voltage Engineering, 2014, 40(12): 3895-3901.
    [6]
    廖一帆,胡传良,唐军,等. 污秽绝缘子安装并联间隙的雷电击穿特性分析[J]. 西南交通大学学报,2018,53(6): 1117-1122. doi: 10.3969/j.issn.0258-2724.2018.06.004

    LIAO Yifan, HU Chuanliang, TANG Jun, et al. Analysis of lightning breakdown characteristics of contaminated insulators in parallel clearance[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1117-1122. doi: 10.3969/j.issn.0258-2724.2018.06.004
    [7]
    陈维江,孙昭英,李国富,等. 110 kV和220 kV架空线路并联间隙防雷保护研究[J]. 电网技术,2006,30(13): 70-75. doi: 10.3321/j.issn:1000-3673.2006.13.013

    CHEN Weijiang, SUN Zhaoying, LI Guofu, et al. Development of parallel gap lightning protection device for 110 kV and 220 kV overhead lines[J]. Power System Technology, 2006, 30(13): 70-75. doi: 10.3321/j.issn:1000-3673.2006.13.013
    [8]
    雷潇,曾宏,刘小江,等. 特高压直流接地极线路雷击闪络风险研究[J]. 电瓷避雷器,2017(2): 59-63.

    LEI Xiao, ZENG Hong, LIU Xiaojiang, et al. Research on the lightning flashover risk of UHVDC electrode lines[J]. Insulators and Surge Arresters, 2017(2): 59-63.
    [9]
    司马文霞,张智,杨庆,等. 110 kV复合绝缘子棒形并联间隙工频电弧疏导过程的试验研究[J]. 中国电机工程学报,2012,32(31): 114-121,226.

    SIMA Wenxia, ZHANG Zhi, YANG Qing, et al. Experimental research on power frequency arc movement process of 110 kV composite insulators in rod shape parallel gap lightning protection devices[J]. Proceedings of the CSEE, 2012, 32(31): 114-121,226.
    [10]
    司马文霞,谭威,杨庆,等. 基于热浮力–磁场力结合的并联间隙电弧运动模型[J]. 中国电机工程学报,2011,31(19): 138-145.

    SIMA Wenxia, TAN Wei, YANG Qing, et al. Long AC arc movement model for parallel gap lightning protection device with consideration of thermal buoyancy and magnetic force[J]. Proceedings of the CSEE, 2011, 31(19): 138-145.
    [11]
    谷山强,何金良,陈维江,等. 架空输电线路并联间隙防雷装置电弧磁场力计算研究[J]. 中国电机工程学报,2006,26(7): 140-145. doi: 10.3321/j.issn:0258-8013.2006.07.026

    GU Shanqiang, HE Jinliang, CHEN Weijiang, et al. Magnetic force computation for the electric arc of parallel gap lightning protection device on overhead transmission lines[J]. Proceedings of the CSEE, 2006, 26(7): 140-145. doi: 10.3321/j.issn:0258-8013.2006.07.026
    [12]
    GODA Y, IWATA M, IKEDA K, et al. Arc voltage characteristics of high current fault arcs in long gaps[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 791-795. doi: 10.1109/61.853021
    [13]
    TERZIJA V, PRESTON G, POPOV M, et al. New static “AirArc” EMTP model of long arc in free air[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 1344-1353. doi: 10.1109/TPWRD.2010.2086082
    [14]
    陈锡阳,尹创荣,杨挺,等. 110 kV输电线路并联间隙防雷装置的设计与运行[J]. 电力建设,2011,32(6): 57-61.

    CHEN Xiyang, YIN Chuangrong, YANG Ting, et al. Design and operation on parallel gap lightning protection device of composite insulators for 110 kV overhead transmission line[J]. Electric Power Construction, 2011, 32(6): 57-61.
    [15]
    王巨丰,李世民,闫仁宝,等. 可主动快速熄灭工频续流电弧的灭弧防雷间隙装置设计[J]. 高电压技术,2014,40(1): 40-45.

    WANG Jufeng, LI Shimin, YAN Renbao, et al. Arc-quenching lightning protection gap for fast extinction of power frequency arcs[J]. High Voltage Engineering, 2014, 40(1): 40-45.
    [16]
    高国强,许潘,魏文赋,等. 带载工况下降弓电弧磁流体建模分析[J]. 高电压技术,2019,45(12): 3916-3923.

    GAO Guoqiang, XU Pan, WEI Wenfu, et al. Magneto hydrodynamics modeling analysis of arc under lowering pantograph with load condition[J]. High Voltage Engineering, 2019, 45(12): 3916-3923.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article views(452) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return