Citation: | SHI Xueqiang, ZHANG Yutao, CHEN Xiaokun, ZHANG Yuanbo, LIN Guocheng. Pool Flame Instability Characteristics under Transverse Acoustic Wave Disturbance[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1293-1302. doi: 10.3969/j.issn.0258-2724.20210152 |
Ethanol pool flame experiments disturbed with transverse low-frequency acoustic wave were carried out to understand the mechanism of acoustic fire suppression and flame dynamics under acoustic disturbance. The acoustic frequency range was 28–54 Hz, and the local acoustic pressure range at the flame was 0.10–1.25 Pa. The basic acoustic parameters, phenomenological characteristics of flame, flame height and width, and flame periodic pulsation were explored with the changing acoustic duct length and distance between acoustic duct and flame. The relation model of flame width and flame height coupled with acoustic parameters was established. The results show that, compared with free flame, the lower acoustic pressure disturbance makes the flame shape and time series more stable, and the larger acoustic pressure disturbance makes the flame more unstable. With increasing Reynolds number locally, the relative flame height is suppressed by acoustic wave and declined, and the flame width changes from being compressed to being lengthened. In addition, lower acoustic pressure will modulate flame to stable periodicity and regular phase. Higher acoustic pressure will disturb flame periodicity, resulting in flame pulsation disorder and phase chaos.
[1] |
朱军,佘平,李维炼,等. 基于导航网格的室内火灾逃生路径动态规划[J]. 西南交通大学学报,2020,55(5): 1103-1110.
ZHU Jun, SHE Ping, LI Weilian, et al. Dynamic planning method for indoor-fire escape path based on navigation grid[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1103-1110.
|
[2] |
NIEGODAJEW P, ŁUKASIAK K, RADOMIAK H, et al. Application of acoustic oscillations in quenching of gas burner flame[J]. Combustion and Flame, 2018, 194: 245-249. doi: 10.1016/j.combustflame.2018.05.007
|
[3] |
MCMANUS K R, POINSOT T, CANDEL S M. A review of active control of combustion instabilities[J]. Progress in Energy and Combustion Science, 1993, 19(1): 1-29. doi: 10.1016/0360-1285(93)90020-F
|
[4] |
YI E Y, BAE M J. On a fire extinguisher using sound winds[J]. Journal of Engineering and Applied Sciences, 2018, 13(4): 977-980.
|
[5] |
BEISNER E, WIGGINS N D, YUE K B, et al. Acoustic flame suppression mechanics in a microgravity environment[J]. Microgravity Science and Technology, 2015, 27(3): 141-144. doi: 10.1007/s12217-015-9422-4
|
[6] |
CHEN S, ZHAO D, LI H K H, et al. Numerical study of dynamic response of a jet diffusion flame to standing waves in a longitudinal tube[J]. Applied Thermal Engineering, 2017, 112: 1070-1082. doi: 10.1016/j.applthermaleng.2016.10.152
|
[7] |
HAUSER M, LORENZ M, SATTELMAYER T. Influence of transversal acoustic excitation of the burner approach flow on the flame structure[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(4): 803-812.
|
[8] |
DAVIS M R, LIN L H. Structures induced by periodic acoustic excitation of a diffusion flame[J]. Combustion and Flame, 1995, 103(3): 151-160. doi: 10.1016/0010-2180(95)00050-G
|
[9] |
KIM K T, LEE J G, QUAY B D, et al. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations[J]. Combustion and Flame, 2010, 157(9): 1731-1744. doi: 10.1016/j.combustflame.2010.04.006
|
[10] |
DEMARE D, BAILLOT F. Acoustic enhancement of combustion in lifted nonpremixed jet flames[J]. Combustion and Flame, 2004, 139(4): 312-328. doi: 10.1016/j.combustflame.2004.09.004
|
[11] |
FACHINI F F. Transient effects in the droplet combustion process in an acoustically perturbed high temperature environment[J]. Combustion Science and Technology, 1998, 139(1): 173-189. doi: 10.1080/00102209808952086
|
[12] |
OKAI K, MORIUE O, ARAKI M, et al. Combustion of single droplets and droplet pairs in a vibrating field under microgravity[J]. Proceedings of the Combustion Institute, 2000, 28(1): 977-983. doi: 10.1016/S0082-0784(00)80304-5
|
[13] |
KIM J S, WILLIAMS F A. Contribution of strained diffusion flames to acoustic pressure response[J]. Combustion and Flame, 1994, 98(3): 279-299. doi: 10.1016/0010-2180(94)90242-9
|
[14] |
CANDEL S. Combustion dynamics and control: Progress and challenges[J]. Proceedings of the Combustion Institute, 2002, 29(1): 1-28. doi: 10.1016/S1540-7489(02)80007-4
|
[15] |
DARPA. Instant flame suppression phase Ⅱ − final report[R]. [S.l.]: Defense Advanced Research Projects Agency, 2008.
|
[16] |
FRIEDMAN A N, STOLIAROV S I. Acoustic extinction of laminar line-flames[J]. Fire Safety Journal, 2017, 93: 102-113. doi: 10.1016/j.firesaf.2017.09.002
|
[17] |
XIONG C Y, LIU Y H, XU C S, et al. Extinguishing the dripping flame by acoustic wave[J]. Fire Safety Journal, 2021, 120: 103109.1-103109.9. doi: 10.1016/j.firesaf.2020.103109
|
[18] |
刘长春,刘新磊,周莎莎,等. 火焰脉动在火灾领域相关研究进展[J]. 中国安全生产科学技术,2018,14(3): 48-56. doi: 10.11731/j.issn.1673-193x.2018.03.007
LIU Changchun, LIU Xinlei, ZHOU Shasha, et al. Research progress on flame pulsation in fire field[J]. Journal of Safety Science and Technology, 2018, 14(3): 48-56. doi: 10.11731/j.issn.1673-193x.2018.03.007
|
[19] |
HU L H, HU J J, DE RIS J L. Flame necking-in and instability characterization in small and medium pool fires with different lip heights[J]. Combustion and Flame, 2015, 162(4): 1095-1103. doi: 10.1016/j.combustflame.2014.10.001
|
[20] |
史学强,张玉涛,张园勃,等. 低频声波激励下乙醇池火燃烧特性研究[J]. 工程热物理学报,2022,43(3): 830-839.
SHI Xueqiang, ZHANG Yutao, ZHANG Yuanbo, et al. Combustion characteristics of an ethanol pool fire perturbed by low-frequency acoustic waves[J]. Journal of Engineering Thermophysics, 2022, 43(3): 830-839.
|
[1] | WANG Junjie, ZHANG Shuai. Large Deformation Control of Tunnel Surrounding Rock Based on Advance Stress Release and Grouting Reinforcement[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230706 |
[2] | MA Kaize, HAN Xiao, HE Tengwei, BAI Jingzhu. Investigation of FRP-Confined UHPC Circular Stub Columns Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1132-1139. doi: 10.3969/j.issn.0258-2724.20220332 |
[3] | ZHOU Siwei, LENG Wuming, NIE Rusong, LI Yafeng, DI Honggui, CHEN Weigeng. Geometric Contour of Slip Surfaces and Loosening Earth Pressure in Sand Under Soil-Arching Effect[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1413-1422. doi: 10.3969/j.issn.0258-2724.20210651 |
[4] | LI Tiansheng, HE Chuan, FANG Yanbing, ZHOU Zihan, BAO Yeming, CHEN Ziquan, BAI Guofeng. Reliability-Based Design Method of Tunnel Structures Based on Deformation Failure of Surrounding Rock[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 613-621. doi: 10.3969/j.issn.0258-2724.20220137 |
[5] | WANG Zhonghao, GUO Xifeng, YANG Xingyu. Bearing Capacity Evaluation of Tunnel-Type Anchorage Based on Artificial Intelligent Algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 534-540. doi: 10.3969/j.issn.0258-2724.20200165 |
[6] | WANG Zhijie, ZHOU Ping, YANG Jianmin, CAO Xiaochuan, ZHAO Qichao, XU Haiyan, XU Ruining. Instability Properties and Deformation Control Methods of Rocks Surrounding Xigeda Strata[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 757-768. doi: 10.3969/j.issn.0258-2724.20170257 |
[7] | YU Fucai, ZHANG Dingli, FANG Qian, SUN Zhenyu, TAI Qimin, ZHAO Jiangtao. Three-Dimensional Analysis Model of Surrounding Rock Deformation and Support Stiffness for Tunnel Construction[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 738-745,763. doi: 10.3969/j.issn.0258-2724.2017.04.012 |
[8] | LI Min, NI Shaoquan, HUANG Qiang, YANG Yuhua. Intelligent Interaction Model of Internet of Things Based on Context Awareness[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1239-1249. doi: 10.3969/j.issn.0258-2724.2016.06.026 |
[9] | DENG Zongcai, WANG Yichao. Axial Compression Stress-Strain Model for UHPC Cylinders Confined by FRP[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 641-647. doi: 10.3969/j.issn.0258-2724.2015.04.011 |
[10] | XIAO Shiguo, ZHANG Tengfei, CAO Xingsong, ZHOU Depei, LIU Shixiong. Design Method for Multi-frame Beams with Anchor Bolts Used to Stabilize High Soft-Rock Slope[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 787-792. doi: 10.3969/j.issn.0258-2724.2014.05.007 |
[11] | LIU Dawei, GUO Jin, WANG Xiaomin, CHEN Jianyi, YANG Yang. Intelligent Monitoring Technologies for Railway Signaling Systems in China[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 904-912. doi: 10.3969/j.issn.0258-2724.2014.05.025 |
[12] | CHEN Lili, LIAO Qiang. Vision-Based Precision Measurement Technology for O-Ring Seal Size[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 122-128. doi: 10.3969/j.issn.0258-2724.2013.01.019 |
[13] | PAN Yi, YANG Cheng, LIN Yongjun, ZHAO Shichun. BP Neural Network-Based Prediction of Load-Bearing Capacity of Concrete Column Reinforced by FRP[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 736-739. |
[14] | TANGJin-sheng, HUANGXue-mei, YANG Ru-gui. Design of Optical Heterodyne Fiber Sensor to Monitor Dam Deformation[J]. Journal of Southwest Jiaotong University, 2004, 17(2): 226-228. |
[15] | YAN Shao-ze, XIAO Li-ying, ZHENG Kai, WU De-long. Experimental Research of Intelligent Active-Member for Self-adaptive Deployable Structures[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 602-605. |
[16] | LIU Cheng-long, ZHANG De-qiang, HUANG Ze-chun. Cause Analysis and Monitoring of Deformation of the Cable Support Tower of Large Span Suspension Bridge During Construction[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 501-504. |
1. | 肖雨晴,罗亮,于博向,杨志渊,郝连东,艾君鹏. 面向海域环境感知的视觉处理方法研究综述. 计算机工程与应用. 2024(23): 62-78 . ![]() |