• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
DU Jianhuan, AI Changfa, AN Shaoke, REN Dongya, QIU Yanjun. Analysis of Aggregate Interaction Based on Configuration Force Fracture Criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 167-174, 226. doi: 10.3969/j.issn.0258-2724.20210115
Citation: DU Jianhuan, AI Changfa, AN Shaoke, REN Dongya, QIU Yanjun. Analysis of Aggregate Interaction Based on Configuration Force Fracture Criterion[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 167-174, 226. doi: 10.3969/j.issn.0258-2724.20210115

Analysis of Aggregate Interaction Based on Configuration Force Fracture Criterion

doi: 10.3969/j.issn.0258-2724.20210115
  • Received Date: 23 Feb 2021
  • Rev Recd Date: 17 Feb 2022
  • Available Online: 19 Nov 2022
  • Publish Date: 06 Mar 2022
  • In order to study the influence of the initial crack configuration (such as the initial crack deflection angle and the space position) in asphalt concrete on the change of crack propagation path and growth mode, A crack model with different initial configurations was established by extended finite element XFEM with configuration force at crack tip as fracture criterion to simulate the crack propagation through single aggregate and asymmetric double aggregate. The influence of initial crack configuration on crack propagation was analyzed from the aspects of crack propagation path and crack tip’s configurational force. The results are summarized below: 1) Under single aggregate interference, the crack tip’s configurational force gradually increases with the increase of the angle (the angle between the line connecting the crack tip and the center of the aggregate and the x-axis), indicating that the interference effect of the aggregate on the crack propagation gradually weakens. When the angle is over 60°, the interference effect of aggregate on crack propagation is negligible; 2) Under the interference of asymmetric double aggregate, as the angle (the angle between the line connecting the center of the aggregate and the x-axis) increases, the aggregate interference effect on crack propagation gradually enhances. When the angle is over 45°, the crack tip’s configurational force is significantly smaller, that is, the aggregate exhibits a “crack arresting” effect on the crack propagation; 3) When the initial crack deflection angle changes, the interference effect of single aggregate and asymmetric duel-aggregate on crack propagation is similar. The crack tip’s configuration force increases first and then decreases with the increase of deflection angle ; 4) When it is equal to 45°, the larger crack tip’s configurational force means that the crack tends to be in an unstable state, and the inhibitory effect of the aggregate on crack propagation is weak; hence, the improvement of the crack resistance of the asphalt concrete by the aggregate is limited.

     

  • loading
  • [1]
    ATKINSON C. The interaction between a crack and an inclusion[J]. International Journal of Engineering Science, 1972, 10(2): 127-136. doi: 10.1016/0020-7225(72)90011-0
    [2]
    RUBINSTEIN A A. Macrocrack-microdefect interaction[J]. Journal of Applied Mechanics, 1986, 53(3): 505-510. doi: 10.1115/1.3171803
    [3]
    ANIFANTIS N K. Crack surface interference: a finite element analysis[J]. Engineering Fracture Mechanics, 2001, 68(12): 1403-1415. doi: 10.1016/S0013-7944(01)00028-5
    [4]
    MISHURIS G, MOVCHAN A, MOVCHAN N, et al. Interaction of an interfacial crack with linear small defects under out-of-plane shear loading[J]. Computational Materials Science, 2012, 52(1): 226-230. doi: 10.1016/j.commatsci.2011.01.023
    [5]
    毛成,邱延峻. 沥青混凝土复合型裂纹扩展行为数值模拟[J]. 公路交通科技,2006,23(10): 20-24. doi: 10.3969/j.issn.1002-0268.2006.10.005

    MAO Cheng, QIU Yanjun. Numerical simulation of compound crack propagation behavior of asphalt concrete[J]. Journal of Highway and Transportation Research and Development, 2006, 23(10): 20-24. doi: 10.3969/j.issn.1002-0268.2006.10.005
    [6]
    黄晓明,肖益民,张裕卿. 沥青混合料黏弹性裂纹扩展[J]. 东南大学学报(自然科学版),2009,39(3): 586-591.

    HUANG Xiaoming, XIAO Yimin, ZHANG Yuqing. Viscoelastic crack propagation in asphalt mixtures[J]. Journal of Southeast University (Natural Science Edition), 2009, 39(3): 586-591.
    [7]
    郭荣鑫. 夹杂物干涉机制及其对材料细观损伤的影响研究[D]. 昆明: 昆明理工大学, 2007.
    [8]
    束一秀,李亚智,尚海江,等. 基于XFEM研究含颗粒夹杂材料的疲劳裂纹行为[J]. 固体火箭技术,2016,39(4): 547-554.

    SHU Yixiu, LI Yazhi, SHANG Haijiang, et al. Fatigue crack behavior in metallic panels with inclusions using XFEM[J]. Journal of Solid Rocket Technology, 2016, 39(4): 547-554.
    [9]
    KIENZLER R, HERRMANN G. Fracture criteria based on local properties of the Eshelby tensor[J]. Mechanics Research Communications, 2002, 29(6): 521-527. doi: 10.1016/S0093-6413(02)00299-9
    [10]
    GUO Y L, LI Q. Material configurational forces applied to mixed mode crack propagation[J]. Theoretical and Applied Fracture Mechanics, 2017, 89: 147-157. doi: 10.1016/j.tafmec.2017.02.006
    [11]
    LARSSON R, FAGERSTRÖM M. A framework for fracture modelling based on the material forces concept with XFEM kinematics[J]. International Journal for Numerical Methods in Engineering, 2005, 62(13): 1763-1788. doi: 10.1002/nme.1246
    [12]
    贺启林. 基于J-积分和构型力理论的材料断裂行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    [13]
    FAGERSTRÖM M, LARSSON R. Approaches to dynamic fracture modelling at finite deformations[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 613-639. doi: 10.1016/j.jmps.2007.05.001
    [14]
    LI Z H, CHEN Q. Crack-inclusion interaction for mode Ⅰ crack analyzed by eshelby equivalent inclusion method[J]. International Journal Of Fracture, 2002, 118(1): 29-40. doi: 10.1023/A:1022652725943
    [15]
    古斌,郭宇立,李群. 基于构型力断裂准则的裂纹与夹杂干涉问题[J]. 力学学报,2017,49(6): 1312-1321. doi: 10.6052/0459-1879-17-209

    GU Bin, GUO Yuli, LI Qun. Crack interacting with an individual inclusion by the fracture criterion of configurational force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1312-1321. doi: 10.6052/0459-1879-17-209
    [16]
    于宁宇,李群. 基于数字散斑相关实验测量的材料构型力的计算方法[J]. 实验力学,2014,29(5): 579-588. doi: 10.7520/1001-4888-13-132

    YU Ningyu, LI Qun. On the algorithm of material configurational force based on digital image correlation measurement[J]. Journal of Experimental Mechanics, 2014, 29(5): 579-588. doi: 10.7520/1001-4888-13-132
    [17]
    BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [18]
    SUKUMAR N, CHOPP D L, MOëS N, et al. Modeling holes and inclusions by level sets in the extended finite-element method[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46/47): 6183-6200.
    [19]
    ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1957, 241: 376-396.
    [20]
    冷严. 季冻区高速铁路沥青混凝土强化基床表层材料制备技术与综合性能试验研究[D]. 成都: 西南交通大学, 2018.
    [21]
    YOU Z P, ADHIKARI S, DAI Q L. Three-dimensional discrete element models for asphalt mixtures[J]. Journal of Engineering Mechanics, 2008, 134(12): 1053-1063. doi: 10.1061/(ASCE)0733-9399(2008)134:12(1053)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article views(276) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return