• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHANG Heshan, XU Jin, DENG Zhaoxiang, JIANG Yanjun. Temperature Field of in-Wheel Motor Using Coupled Multi-physics Domain Solution[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 76-83, 91. doi: 10.3969/j.issn.0258-2724.20170263
Citation: WEI Xing, WANG Rongrong, WEN Zongyi, DAI Lijun, HU Zhe. Influence of Bolt Relaxation of High-Speed Railway Sound Barrier on Fatigue Life[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 373-380. doi: 10.3969/j.issn.0258-2724.20210060

Influence of Bolt Relaxation of High-Speed Railway Sound Barrier on Fatigue Life

doi: 10.3969/j.issn.0258-2724.20210060
  • Received Date: 21 Jan 2021
  • Rev Recd Date: 24 Jul 2021
  • Available Online: 05 Nov 2022
  • Publish Date: 05 Aug 2021
  • The fatigue life and relaxation life of bolts affect their service life. Under the joint action of fatigue and relaxation, the connection at the column base is deteriorating. In order to explore the influence of the relaxation of connecting bolts on the fatigue life of high-speed railway sound barrier, bolts with asymmetrical and symmetrical arrangements used for high-speed railway sound barrier at a train speed of 400 km/h are taken as the research objects, and the finite element models of column base bolts are established using ANSYS. The preload is applied by cooling method, positive and negative unit bending moment loads are applied to calculate the stress amplitude of the most unfavorable bolt at the column base under different preloads, and the fitting relationship between the stress amplitude and preload is proposed. Moreover, based on Midas, a whole model of noise barrier is established to analyze the dynamic response characteristics of the barrier structure at the train speed of 400 km/h. The bending moment time history results of column base bolts are extracted to compare the bolt life considering fatigue failure only and the bolt life considering relaxation and fatigue together. Results show that the bolt relaxation will reduce the preload and increase the bolt stress amplitude of bolt base models in both cases of asymmetrical and symmetrical arrangements. In the existing time history calculation of column base bolts, the fatigue life considering the combined effect of relaxation and fatigue is much lower than that only considering the fatigue effect. When the preload is reduced to 55% due to the relaxation, the fatigue effect will occur. The results can provide a reference for designers of connection structures to quantitatively evaluate the bolt life and the maintenance of bolts.

     

  • [1]
    孔繁晓,言婷,周海波. 预紧力对风电叶片根部螺栓疲劳寿命的影响分析[J]. 风机技术,2017,59(6): 49-52. doi: 10.16492/j.fjjs.2017.06.0008

    KONG Fanxiao, YAN Ting, ZHOU Haibo. Influence of the pretightening stress on the fatigue life of a bolt used for wind turbine blades[J]. Chinese Journal of Turbomachinery, 2017, 59(6): 49-52. doi: 10.16492/j.fjjs.2017.06.0008
    [2]
    朱若燕,李厚民. 高强度螺栓的预紧力及疲劳寿命[J]. 湖北工学院学报,2004,19(3): 135-136,141.

    ZHU Ruoyan, LI Houmin. Preload and fatigue life of high strength bolt[J]. Journal of Hubei University of Technology, 2004, 19(3): 135-136,141.
    [3]
    吴勇,陈琴珠,邹慧君. 摩擦离合器螺栓联接预紧力对疲劳寿命的影响[J]. 机械设计与研究,2012,28(6): 67-69.

    WU Yong, CHEN Qinzhu, ZOU Huijun. Effect of preload on fatigue life of friction clutch bolt[J]. Machine Design & Research, 2012, 28(6): 67-69.
    [4]
    刘嘉慧,林腾蛟,吕和生,等. 多工况下风电齿轮箱联接螺栓疲劳寿命分析[J]. 机械研究与应用,2020,33(3): 95-101. doi: 10.16576/j.cnki.1007-4414.2020.03.027

    LIU Jiahui, LIN Tengjiao, LV Hesheng, et al. Fatigue life analysis of the bolt connections for wind turbine gearbox under multiple working conditions[J]. Mechanical Research & Application, 2020, 33(3): 95-101. doi: 10.16576/j.cnki.1007-4414.2020.03.027
    [5]
    祝雨. 螺栓联接的预紧力与疲劳强度的讨论[J]. 化工管理,2016(35): 256.
    [6]
    郭卫凡,唐文良. 螺栓联接的预紧力与疲劳强度的讨论[J]. 科技视界,2013(23): 65-66.

    GUO Weifan, TANG Wenliang. A discussion of effect of preload on bolt joint fatigue strength[J]. Science & Technology Vision, 2013(23): 65-66.
    [7]
    LIU Y Z, CHEN J, ZHANG X F, et al. Fatigue behaviour of blind bolts under tensile cyclic loads[J]. Journal of Constructional Steel Research, 2018, 148: 16-27. doi: 10.1016/j.jcsr.2018.05.019
    [8]
    PENNEC F, DURIF S, CAMARA A B, et al. 01.16: Fatigue behaviour analysis of bolts in tee-stub steel connections[J]. ce/papers, 2017, 1(2/3): 298-307.
    [9]
    曹罚君. 多轴非比例载荷谱条件下高强度螺栓疲劳强度分析[J]. 机械强度,2019,41(1): 232-237.

    CAO Fajun. Fatigue strength analysis of high-strength joint bolts under multiaxial nonproportional loading spectrum[J]. Journal of Mechanical Strength, 2019, 41(1): 232-237.
    [10]
    刘育,晋健,王勇飞,等. 基于PD-STFA的水轮机顶盖联接螺栓疲劳寿命计算方法研究[J]. 机械强度,2020,42(6): 1459-1465.

    LIU Yu, JIN Jian, WANG Yongfei, et al. Research on the fatigue life calculation method of hydro-turbine head cover connecting bolts based on pd-stfa[J]. Journal of Mechanical Strength, 2020, 42(6): 1459-1465.
    [11]
    汤春球,周科帆,莫易敏,等. 基于有限元仿真的螺栓疲劳性能分析[J]. 数字制造科学,2017,15(增1): 30-35.

    TANG Chunqiu, ZHOU Kefan, MO Yimin, et al. FEA fatigue simulation on the bolt performance[J]. Digital Manufacture Science, 2017, 15(S1): 30-35.
    [12]
    彭飞. 螺栓预紧力对发动机气缸盖疲劳特性的影响[J]. 唐山学院学报,2020,33(3): 56-59.

    PENG Fei. Effect of the bolt pretightening force on the fatigue properties of engine cylinder head[J]. Journal of Tangshan University, 2020, 33(3): 56-59.
    [13]
    杜静,黄文,王磊,等. 基于接触分析的高强度螺栓疲劳寿命分析[J]. 现代科学仪器,2013(1): 73-77,90.

    DU Jing, HUANG Wen, WANG Lei, et al. Fatigue life analysis of the high intention bolt based on contact analysis[J]. Modern Scientific Instruments, 2013(1): 73-77,90.
    [14]
    MAJZOOBI G H, FARRAHI G H, HABIBI N. Experimental evaluation of the effect of thread pitch on fatigue life of bolts[J]. International Journal of Fatigue, 2005, 27(2): 189-196. doi: 10.1016/j.ijfatigue.2004.06.011
    [15]
    RAHMAN N A, TIZANI W. Fatigue performance of blind bolt in concrete-filled hollow section[C]// Proceedings of 2013 4th International Conference on Information Technology for Manufacturing Systems (ITMS 2013 Ⅳ). Auckland: Trans Tech Publications Ltd., 2013: 5-10.
    [16]
    WANG H L, YIN H J, LIU K. Fatigue performance analysis of frictional type high strength bolts of overlapped joints[C]//13th International Conference on Fracture (ICF13). Beijing: Curran Associates, Inc., 2013: 2132-2137.
    [17]
    张新鹏,张广泰,张辉亮,等. 螺旋流道水冷IGBT散热器数值模拟及试验研究[J]. 电力电子技术,2014,48(2): 71-73. doi: 10.3969/j.issn.1000-100X.2014.02.023

    ZHANG Xinpeng, ZHANG Guangtai, ZHANG Huiliang, et al. Numerical simulation and experimental research on spiral flow channel water-cooling IGBT radiator[J]. Power Electronics, 2014, 48(2): 71-73. doi: 10.3969/j.issn.1000-100X.2014.02.023
    [18]
    中华人民共和国国家标准. 六角头螺栓: GB/T 5782—2016[S]. 北京: 中国标准出版社, 2016.
    [19]
    中华人民共和国国家标准. 1型六角螺母: GB//T 6170—2015[S]. 北京: 中国标准出版社, 2016.
    [20]
    中华人民共和国国家标准. 钢结构设计标准: GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2017.
    [21]
    赵丽滨,龙丽平,蔡庆云. 列车风致脉动力下声屏障的动力学性能[J]. 北京航空航天大学学报,2009,35(4): 505-508. doi: 10.13700/j.bh.1001-5965.2009.04.012

    ZHAO Libin, LONG Liping, CAI Qingyun. Dynamic properties of noise barrier structure subjected to train-induced impulsive wind pressure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 505-508. doi: 10.13700/j.bh.1001-5965.2009.04.012
    [22]
    屈爱平,高淑英. 梁-墩-桩基的动力特性研究[J]. 西南交通大学学报,2001,36(6): 641-644. doi: 10.3969/j.issn.0258-2724.2001.06.021

    QU Aiping, GAO Shuying. Vibration characteristics of a 3-dimensional beam-pier-pile system[J]. Journal of Southwest Jiaotong University, 2001, 36(6): 641-644. doi: 10.3969/j.issn.0258-2724.2001.06.021
  • Relative Articles

    [1]WANG Yanqin, ZHANG Qiumin, LIN Feihong, DONG Liang. Electromagnetic-Thermal Field Coupling Calculation of Contactless Power Transfer Vehicle[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 545-551. doi: 10.3969/j.issn.0258-2724.20191123
    [2]SUN Keguo, LI Si, XU Weiping, XIAO Zhifei, LI Haobo, XU Yuping. Influence of Thermal Conductivity on Temporal and Spatial Distributions of Temperature Filed in Cold Region Tunnel[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 256-264, 289. doi: 10.3969/j.issn.0258-2724.20180530
    [3]CHEN Xianhua, MA Lili, YANG Guotao, CAI Degou. Temperature Field Characteristics of High-Speed Railway Subgrade Surface with Asphalt Concrete Layer in Cold Regions[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1196-1202. doi: 10.3969/j.issn.0258-2724.20170490
    [4]ZHANG Heshan, DENG Zhaoxiang, TUO Jiying, ZHANG Yu, TAO Shengchao. Multi-Objective Optimum Design for in-Wheel Motor Based on Improved Artificial Bee Colony Algorithm[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 671-678. doi: 10.3969/j.issn.0258-2724.20170094
    [5]GAO Yan, GENG Jiying, JIA Chao, ZHOU Jun, ZHU Yongquan, HE Benguo, ZHONG Yongqiang. Temperature Field Law in Cold Region Tunnels and Insulation Effect of Air Curtain[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1047-1054. doi: 10.3969/j.issn.0258-2724.20170295
    [6]DAI Gonglian, YANG Linghao, WEN Wangqing, ZHAO Tao. Time-History Analysis of Temperature Field of Medium-Low Maglev Guideway Girder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 227-234. doi: 10.3969/j.issn.0258-2724.20170554
    [7]CAI Jing, LI Yue, SUN Qingang. Rutting Behavior of Flexible Pavement in Airport Turning Area under Temperature Field[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 186-194. doi: 10.3969/j.issn.0258-2724.2017.01.026
    [8]YANG Rongshan, WAN Zhangbo, LIU Xueyi, ZHANG Zhongwang, ZHAO Pingrui. Temperature Field Test of CRTS Ⅰ Twin-Block Ballastless Track in Winter[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 454-460. doi: 10.3969/j.issn.0258-2724.2015.03.011
    [9]LIU Qingyou, WANG Xingming, XU Tao. Critical Discharge Flow of Sand Cleaning Fluid Considering Transient Temperature Effect of Horizontal Well[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1123-1129. doi: 10.3969/j.issn.0258-2724.2014.06.028
    [10]GUO Lei, LI Qunzhan, XIE Shaofeng, SHU Zeliang. Temperature Field of Catenary for Electrified Railway during Online Anti-icing[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 230-235,242. doi: 10.3969/j.issn.0258-2724.2013.02.007
    [11]CHEN Xiao'an, SHANG Fujun, SONG Shuncheng. Numerical Simulation of Temperature Distribution of Induction Plasma Torch in Preparation of Superfine Powder[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 271-276. doi: 10.3969/j.issn.0258-2724.2011.02.016
    [12]LI Jinping, CHEN Jianjun, ZHOU Chuanjun. Perturbed Numerical Algorithm of Nonprobabilistic Convex Set Theoretical Models for Temperature Field[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 101-105.
    [13]WU Jianghong, WANG Xihui, TANG Yongbo, CHEN Yungui. Experimental Investigation on Periodical Temperature Field in Active Magnetic Regenerator of Rotary Magnetic Refrigerator[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 743-747,793.
    [14]HE Yulong, YANG Lizhong, YANG Jiyi. Governing Equations for Coupled Thermo-Hydro-Mechanical Behaviors in Unsaturated Rock Mass[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 419-423.
    [15]ZHAO Xin, WEN Ze-feng, JIN Xue-song. Numerical Simulation of Temperature Field in Process of Casting Solidification[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 15-19.
    [16]HE Yu-long, YANGLi-zhong, YANGMing. A Quantitative Method for the Coupling Effect of Temperature Fields and Stress Fields in Rock Mass[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 10-13.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-122025-012025-022025-032025-042025-052025-062025-072025-082025-092025-102025-11051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.6 %FULLTEXT: 31.6 %META: 64.5 %META: 64.5 %PDF: 3.9 %PDF: 3.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.7 %其他: 11.7 %其他: 0.3 %其他: 0.3 %上海: 1.0 %上海: 1.0 %东莞: 1.8 %东莞: 1.8 %临汾: 0.3 %临汾: 0.3 %北京: 3.7 %北京: 3.7 %十堰: 0.3 %十堰: 0.3 %南京: 3.7 %南京: 3.7 %南宁: 0.3 %南宁: 0.3 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.7 %哥伦布: 0.7 %唐山: 0.4 %唐山: 0.4 %嘉兴: 0.6 %嘉兴: 0.6 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.4 %宣城: 0.4 %山景城: 0.1 %山景城: 0.1 %常州: 0.3 %常州: 0.3 %广州: 0.3 %广州: 0.3 %弗吉尼亚州: 0.1 %弗吉尼亚州: 0.1 %张家口: 4.0 %张家口: 4.0 %徐州: 0.4 %徐州: 0.4 %成都: 0.9 %成都: 0.9 %扬州: 0.6 %扬州: 0.6 %杭州: 1.9 %杭州: 1.9 %格兰特县: 0.1 %格兰特县: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.9 %深圳: 0.9 %清远: 0.4 %清远: 0.4 %温州: 0.4 %温州: 0.4 %湖州: 0.1 %湖州: 0.1 %漯河: 1.2 %漯河: 1.2 %石家庄: 2.4 %石家庄: 2.4 %芒廷维尤: 12.2 %芒廷维尤: 12.2 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.1 %苏州: 0.1 %西宁: 38.1 %西宁: 38.1 %西安: 0.9 %西安: 0.9 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.6 %贵阳: 0.6 %运城: 0.9 %运城: 0.9 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长沙: 1.5 %长沙: 1.5 %雷德蒙德: 0.6 %雷德蒙德: 0.6 %青岛: 0.6 %青岛: 0.6 %其他其他上海东莞临汾北京十堰南京南宁南昌南通哈尔滨哥伦布唐山嘉兴大连天津太原安康宣城山景城常州广州弗吉尼亚州张家口徐州成都扬州杭州格兰特县武汉沈阳洛阳深圳清远温州湖州漯河石家庄芒廷维尤芜湖芝加哥苏州西宁西安西雅图贵阳运城邯郸郑州重庆长沙雷德蒙德青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(8)

    Article views(521) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return