Citation: | WEI Kai, WANG Xian, DING Wenhao, LUO Ting, ZHAO Zeming. Theoretical Design Method for Composite Stiffness under Baseplate of Elastic Indirect Fasteners[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1000-1007. doi: 10.3969/j.issn.0258-2724.20200860 |
In order to explore the design method of the combined stiffness under the baseplate of the elastic indirect fastener system, improve the error and accuracy in the design of the traditional model, based on nonlinear elastic foundation beam, a theoretical calculation model of composite stiffness under baseplate is proposed. First, the nonlinear elasticity of the baseplate pad is introduced into the continuous foundation beam model, and the beam is divided into multiple calculation elements, so as to establish a theoretical analysis model of the composite stiffness under baseplate reflecting the actual deformation and support characteristics of the baseplate. Moreover, the midpoint stiffness method is adopted to solve the deformation of the baseplate and the composite stiffness under baseplate during imposing the installation torque of anchor bolts and the train load. Secondly, mechanical testing machine is used to test the deformation and composite stiffness of DZ Ⅲ fastener system in the real service state, and validate the theoretical model. Finally, the composite stiffness under baseplate of traditional and theoretical calculation models are calculated in different installation conditions (bolt torque) and baseplate design parameters (thickness and bolt distance), and the design error variation of traditional calculation model under different design baseplate parameters is summarized. The comparative analysis shows that, due to neglecting the iron baseplate deformation and nonlinear elasticity under baseplate, the traditional calculation model has a design error range of 37.75%-94.27% within the installation torque range (150-250 N•m), which fails to meet the error requirements of engineering design. The maximum error of the proposed theoretical calculation model is only 2.91%, which meets the requirements of engineering design. When the thickness of the iron baseplate is low or the bolt spacing is wide, the difference between the actual deformation of the iron baseplate and the calculation assumptions in the traditional calculation model will magnify, and the design error of the traditional calculation model will be further increased.
[1] |
赵汝康. 铁路钢轨扣件[M]. 北京: 中国铁道出版社, 2018: 159-162.
|
[2] |
韦凯,王丰,赵泽明,等. 弹性分开式扣件弹性垫板静刚度测试评价方法[J]. 铁道工程学报,2018,35(11): 32-36,86. doi: 10.3969/j.issn.1006-2106.2018.11.006
WEI Kai, WANG Feng, ZHAO Zeming, et al. The methodology research on the test and evaluation of static stiffness of elastic pads in elastic separated fastener[J]. Journal of Railway Engineering Society, 2018, 35(11): 32-36,86. doi: 10.3969/j.issn.1006-2106.2018.11.006
|
[3] |
韦凯,王丰,牛澎波,等. 钢轨扣件弹性垫板的动态黏弹塑性力学试验及理论表征研究[J]. 铁道学报,2018,40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015
WEI Kai, WANG Feng, NIU Pengbo, et al. Experimental investigation and theoretical model of viscoelastic and plastic dynamic properties of rail pads[J]. Journal of the China Railway Society, 2018, 40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015
|
[4] |
陈家照, 黄闽翔, 王学仁, 等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报, 2015, 29(增1): 118-120, 124.
CHEN Jiazhao, HUANG Minxiang, WANG Xueren, et al. Typical constitutive models of rubber materials and their ranges of application[J]. Materials Review, 2015, 29(S1): 118-120, 124.
|
[5] |
张琦,时剑文,索双富,等. 基于Mooney-Rivlin模型和Yeoh模型的橡胶材料有限元分析[J]. 合成橡胶工业,2020,43(6): 468-471. doi: 10.3969/j.issn.1000-1255.2020.06.006
ZHANG Qi, SHI Jianwen, SUO Shuangfu, et al. Finite element analysis of rubber materials based on Mooney-Rivlin models and Yeoh models[J]. China Synthetic Rubber Industry, 2020, 43(6): 468-471. doi: 10.3969/j.issn.1000-1255.2020.06.006
|
[6] |
ANNIN B D, BAGROV K V. Numerical simulation of the hyperelastic material using new strain measure[J]. Acta Mechanica, 2021, 232(5): 1809-1813. doi: 10.1007/s00707-020-02904-3
|
[7] |
陈侃,沈景凤,余关仁,等. 轨道用橡胶扣件Mooney-Rivlin模型参数确定及压缩变形的有限元模拟[J]. 机械工程材料,2016,40(4): 89-92. doi: 10.11973/jxgccl201604020
CHEN Kan, SHEN Jingfeng, YU Guanren, et al. Parameter determination of Mooney-Rivlin model and finite element simulation of the compression deformation of rubber rail fastener[J]. Materials for Mechanical Engineering, 2016, 40(4): 89-92. doi: 10.11973/jxgccl201604020
|
[8] |
龙驭球. 弹性地基梁的计算[M]. 北京: 人民教育出版社, 1981: 27-67.
|
[9] |
铁科院铁建所. 高速铁路扣件系统试验方法 第3部分 组装静刚度的测定: TB/T 3395.1—2015[S]. 北京: 国家铁路局, 2015.
|
[10] |
铁道科学研究院金属及化学研究所, 北京市化工产品质量监督检验站. 轨道交通扣件系统弹性垫板: GB/T 21527—2008[S]. 北京: 中国标准出版社, 2008.
|
[11] |
WANG M J. The role of filler networking in dynamic properties of filled rubber[J]. Rubber Chemistry and Technology, 1999, 72(2): 430-448. doi: 10.5254/1.3538812
|
[12] |
赵泽明,胡小刚,韦凯,等. 弹性分开式扣件板下弹性垫板静刚度试验及评价[J]. 铁道建筑,2018,58(8): 127-131. doi: 10.3969/j.issn.1003-1995.2018.08.31
ZHAO Zeming, HU Xiaogang, WEI Kai, et al. Experiment and evaluation on static stiffness of resilient pad under tie plate in elastic separated rail fastening[J]. Railway Engineering, 2018, 58(8): 127-131. doi: 10.3969/j.issn.1003-1995.2018.08.31
|
[1] | OU Zhijing, CHEN Weilong, CAO Lei. Seismic Performance of Concrete Composite Columns of Ultra-High Performance Concrete Precast Pipe[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 63-71. doi: 10.3969/j.issn.0258-2724.20230073 |
[2] | WANG Jiali, WANG Ying, CHEN Xiwen, YANG Dongxu, LAI Zhichao. Comparison of Shear Behaviors of Different Concrete-Filled High-Strength Steel Tubes[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230485 |
[3] | MA Kaize, HAN Xiao, HE Tengwei, BAI Jingzhu. Investigation of FRP-Confined UHPC Circular Stub Columns Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1132-1139. doi: 10.3969/j.issn.0258-2724.20220332 |
[4] | FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035 |
[5] | TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388 |
[6] | MU Chenglin, LI Huadong, PEI Xiangjun, WANG Chao, WANG Rui. Experimental Study on Anisotropy Mechanical Properties of Corroded Rock Mass[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1070-1076, 1112. doi: 10.3969/j.issn.0258-2724.20210556 |
[7] | YANG Cheng, LIAO Weilong, SONG Tongwei, GENG Ping, FANG Yong. Bond-Slip of Connecting Bolts Between Tunnel Segments and Metro Station Portal Ring Beam[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 876-885. doi: 10.3969/j.issn.0258-2724.20200703 |
[8] | TANG Hongyuan, LI Zhengzhou, FAN Luyao, YANG Hong. Experimental Investigation on Behavior of Rectangular Concrete-Filled Stainless Steel Tubular Stub Columns under Axial Loading[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 855-864. doi: 10.3969/j.issn.0258-2724.20200416 |
[9] | ZHOU Linli, TAN Ping, TENG Xiaofei. Lateral Performance of Semicircular Corrugated Steel Plate Shear Wall with Edge Stiffeners[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 550-557. doi: 10.3969/j.issn.0258-2724.20190319 |
[10] | WANG Jun, LIN Guojin, TANG Xie, XU Guowen, TANG Rui. Failure Characteristics and Engineering Application of Layered Rock with Two Pre-existing Non-coplanar Fissures[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 719-725, 732. doi: 10.3969/j.issn.0258-2724.20180044 |
[11] | SHU Gang, ZHANG Qinghua, HUANG Yun, BU Yizhi. Micromechanical Analysis of Steel Fiber Corrosion in Ultra-high Performance Concrete[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1268-1276. doi: 10.3969/j.issn.0258-2724.20170453 |
[12] | SU Chengguang, LIU Dan, CAO Shihao, ZHAO Pingrui, LIU Xueyi. Analysis of Static and Dynamic Flexural Failure Mode of Double-Layer Concrete Composite Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 731-737. doi: 10.3969/j.issn.0258-2724.2017.04.011 |
[13] | QU Hui, PAN Hongwei, LIU Yanzhi, TAN Ding. Tensile Behaviour of Hollo-bolts Embedded in Concrete[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 985-993. doi: 10.3969/j.issn.0258-2724.2017.05.020 |
[14] | ZHANG Min, MA Jianlin, ZHANG Zhengxin, DU Can. Bond-Slip Performance of Steel Tubular Composite Piles[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 540-545,553. doi: 10.3969/j.issn.0258-2724.2017.03.014 |
[15] | DENG Zongcai, WANG Yichao. Axial Compression Stress-Strain Model for UHPC Cylinders Confined by FRP[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 641-647. doi: 10.3969/j.issn.0258-2724.2015.04.011 |
[16] | YU Xin, LI Yingtao, LIU Yun. Grey Target Optimization of Waterproof Adhesive Material for Concrete Bridge Deck Pavement Based on Mechanical Analysis[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 1086-1091. doi: 10.3969/j.issn.0258-2724.2012.06.028 |
[17] | WANG Hailong|LIChaohong|XUGuangxing, . Mesoscopic Numerical Simulation of Bond Behavior of Ribbed Bars and Concrete[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 365-372. doi: 10.3969/j.issn.0258-2724.2011.03.002 |
[18] | WANG Jian, YAO Lingkan, JIANG Liangwei. Seismic Deformation and Failure Modes and Mechanism of Soil Mass[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 196-202. doi: 10. 3969/ j. issn. 0258-2724. |
[19] | LIU Yan-hui, ZHAO Shi-chun. Experimental Research on Seismic Fortification Properties of Unbonded Prestressed Concrete Frames[J]. Journal of Southwest Jiaotong University, 2003, 16(6): 647-650. |