• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
YU Jiang, TAO Hongqun, WANG Yating, WANG Yizheng, PENG Weidong, RAN Zongxin, HE Yulong. Influence of Phosphorus Control on Coupling System ofWinery Wastewater and Microalgae Cultivation[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 655-662. doi: 10.3969/j.issn.0258-2724.20180585
Citation: WEI Kai, WANG Xian, DING Wenhao, LUO Ting, ZHAO Zeming. Theoretical Design Method for Composite Stiffness under Baseplate of Elastic Indirect Fasteners[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1000-1007. doi: 10.3969/j.issn.0258-2724.20200860

Theoretical Design Method for Composite Stiffness under Baseplate of Elastic Indirect Fasteners

doi: 10.3969/j.issn.0258-2724.20200860
  • Received Date: 23 Dec 2020
  • Rev Recd Date: 09 Apr 2021
  • Available Online: 11 Jul 2022
  • Publish Date: 07 Sep 2021
  • In order to explore the design method of the combined stiffness under the baseplate of the elastic indirect fastener system, improve the error and accuracy in the design of the traditional model, based on nonlinear elastic foundation beam, a theoretical calculation model of composite stiffness under baseplate is proposed. First, the nonlinear elasticity of the baseplate pad is introduced into the continuous foundation beam model, and the beam is divided into multiple calculation elements, so as to establish a theoretical analysis model of the composite stiffness under baseplate reflecting the actual deformation and support characteristics of the baseplate. Moreover, the midpoint stiffness method is adopted to solve the deformation of the baseplate and the composite stiffness under baseplate during imposing the installation torque of anchor bolts and the train load. Secondly, mechanical testing machine is used to test the deformation and composite stiffness of DZ Ⅲ fastener system in the real service state, and validate the theoretical model. Finally, the composite stiffness under baseplate of traditional and theoretical calculation models are calculated in different installation conditions (bolt torque) and baseplate design parameters (thickness and bolt distance), and the design error variation of traditional calculation model under different design baseplate parameters is summarized. The comparative analysis shows that, due to neglecting the iron baseplate deformation and nonlinear elasticity under baseplate, the traditional calculation model has a design error range of 37.75%-94.27% within the installation torque range (150-250 N•m), which fails to meet the error requirements of engineering design. The maximum error of the proposed theoretical calculation model is only 2.91%, which meets the requirements of engineering design. When the thickness of the iron baseplate is low or the bolt spacing is wide, the difference between the actual deformation of the iron baseplate and the calculation assumptions in the traditional calculation model will magnify, and the design error of the traditional calculation model will be further increased.

     

  • [1]
    赵汝康. 铁路钢轨扣件[M]. 北京: 中国铁道出版社, 2018: 159-162.
    [2]
    韦凯,王丰,赵泽明,等. 弹性分开式扣件弹性垫板静刚度测试评价方法[J]. 铁道工程学报,2018,35(11): 32-36,86. doi: 10.3969/j.issn.1006-2106.2018.11.006

    WEI Kai, WANG Feng, ZHAO Zeming, et al. The methodology research on the test and evaluation of static stiffness of elastic pads in elastic separated fastener[J]. Journal of Railway Engineering Society, 2018, 35(11): 32-36,86. doi: 10.3969/j.issn.1006-2106.2018.11.006
    [3]
    韦凯,王丰,牛澎波,等. 钢轨扣件弹性垫板的动态黏弹塑性力学试验及理论表征研究[J]. 铁道学报,2018,40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015

    WEI Kai, WANG Feng, NIU Pengbo, et al. Experimental investigation and theoretical model of viscoelastic and plastic dynamic properties of rail pads[J]. Journal of the China Railway Society, 2018, 40(12): 115-122. doi: 10.3969/j.issn.1001-8360.2018.12.015
    [4]
    陈家照, 黄闽翔, 王学仁, 等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报, 2015, 29(增1): 118-120, 124.

    CHEN Jiazhao, HUANG Minxiang, WANG Xueren, et al. Typical constitutive models of rubber materials and their ranges of application[J]. Materials Review, 2015, 29(S1): 118-120, 124.
    [5]
    张琦,时剑文,索双富,等. 基于Mooney-Rivlin模型和Yeoh模型的橡胶材料有限元分析[J]. 合成橡胶工业,2020,43(6): 468-471. doi: 10.3969/j.issn.1000-1255.2020.06.006

    ZHANG Qi, SHI Jianwen, SUO Shuangfu, et al. Finite element analysis of rubber materials based on Mooney-Rivlin models and Yeoh models[J]. China Synthetic Rubber Industry, 2020, 43(6): 468-471. doi: 10.3969/j.issn.1000-1255.2020.06.006
    [6]
    ANNIN B D, BAGROV K V. Numerical simulation of the hyperelastic material using new strain measure[J]. Acta Mechanica, 2021, 232(5): 1809-1813. doi: 10.1007/s00707-020-02904-3
    [7]
    陈侃,沈景凤,余关仁,等. 轨道用橡胶扣件Mooney-Rivlin模型参数确定及压缩变形的有限元模拟[J]. 机械工程材料,2016,40(4): 89-92. doi: 10.11973/jxgccl201604020

    CHEN Kan, SHEN Jingfeng, YU Guanren, et al. Parameter determination of Mooney-Rivlin model and finite element simulation of the compression deformation of rubber rail fastener[J]. Materials for Mechanical Engineering, 2016, 40(4): 89-92. doi: 10.11973/jxgccl201604020
    [8]
    龙驭球. 弹性地基梁的计算[M]. 北京: 人民教育出版社, 1981: 27-67.
    [9]
    铁科院铁建所. 高速铁路扣件系统试验方法 第3部分 组装静刚度的测定: TB/T 3395.1—2015[S]. 北京: 国家铁路局, 2015.
    [10]
    铁道科学研究院金属及化学研究所, 北京市化工产品质量监督检验站. 轨道交通扣件系统弹性垫板: GB/T 21527—2008[S]. 北京: 中国标准出版社, 2008.
    [11]
    WANG M J. The role of filler networking in dynamic properties of filled rubber[J]. Rubber Chemistry and Technology, 1999, 72(2): 430-448. doi: 10.5254/1.3538812
    [12]
    赵泽明,胡小刚,韦凯,等. 弹性分开式扣件板下弹性垫板静刚度试验及评价[J]. 铁道建筑,2018,58(8): 127-131. doi: 10.3969/j.issn.1003-1995.2018.08.31

    ZHAO Zeming, HU Xiaogang, WEI Kai, et al. Experiment and evaluation on static stiffness of resilient pad under tie plate in elastic separated rail fastening[J]. Railway Engineering, 2018, 58(8): 127-131. doi: 10.3969/j.issn.1003-1995.2018.08.31
  • Relative Articles

    [1]OU Zhijing, CHEN Weilong, CAO Lei. Seismic Performance of Concrete Composite Columns of Ultra-High Performance Concrete Precast Pipe[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 63-71. doi: 10.3969/j.issn.0258-2724.20230073
    [2]WANG Jiali, WANG Ying, CHEN Xiwen, YANG Dongxu, LAI Zhichao. Comparison of Shear Behaviors of Different Concrete-Filled High-Strength Steel Tubes[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230485
    [3]MA Kaize, HAN Xiao, HE Tengwei, BAI Jingzhu. Investigation of FRP-Confined UHPC Circular Stub Columns Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1132-1139. doi: 10.3969/j.issn.0258-2724.20220332
    [4]FENG Bo, LIU Qing, QIAN Yongjiu. Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089. doi: 10.3969/j.issn.0258-2724.20220035
    [5]TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
    [6]MU Chenglin, LI Huadong, PEI Xiangjun, WANG Chao, WANG Rui. Experimental Study on Anisotropy Mechanical Properties of Corroded Rock Mass[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1070-1076, 1112. doi: 10.3969/j.issn.0258-2724.20210556
    [7]YANG Cheng, LIAO Weilong, SONG Tongwei, GENG Ping, FANG Yong. Bond-Slip of Connecting Bolts Between Tunnel Segments and Metro Station Portal Ring Beam[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 876-885. doi: 10.3969/j.issn.0258-2724.20200703
    [8]TANG Hongyuan, LI Zhengzhou, FAN Luyao, YANG Hong. Experimental Investigation on Behavior of Rectangular Concrete-Filled Stainless Steel Tubular Stub Columns under Axial Loading[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 855-864. doi: 10.3969/j.issn.0258-2724.20200416
    [9]ZHOU Linli, TAN Ping, TENG Xiaofei. Lateral Performance of Semicircular Corrugated Steel Plate Shear Wall with Edge Stiffeners[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 550-557. doi: 10.3969/j.issn.0258-2724.20190319
    [10]WANG Jun, LIN Guojin, TANG Xie, XU Guowen, TANG Rui. Failure Characteristics and Engineering Application of Layered Rock with Two Pre-existing Non-coplanar Fissures[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 719-725, 732. doi: 10.3969/j.issn.0258-2724.20180044
    [11]SHU Gang, ZHANG Qinghua, HUANG Yun, BU Yizhi. Micromechanical Analysis of Steel Fiber Corrosion in Ultra-high Performance Concrete[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1268-1276. doi: 10.3969/j.issn.0258-2724.20170453
    [12]SU Chengguang, LIU Dan, CAO Shihao, ZHAO Pingrui, LIU Xueyi. Analysis of Static and Dynamic Flexural Failure Mode of Double-Layer Concrete Composite Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 731-737. doi: 10.3969/j.issn.0258-2724.2017.04.011
    [13]QU Hui, PAN Hongwei, LIU Yanzhi, TAN Ding. Tensile Behaviour of Hollo-bolts Embedded in Concrete[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 985-993. doi: 10.3969/j.issn.0258-2724.2017.05.020
    [14]ZHANG Min, MA Jianlin, ZHANG Zhengxin, DU Can. Bond-Slip Performance of Steel Tubular Composite Piles[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 540-545,553. doi: 10.3969/j.issn.0258-2724.2017.03.014
    [15]DENG Zongcai, WANG Yichao. Axial Compression Stress-Strain Model for UHPC Cylinders Confined by FRP[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 641-647. doi: 10.3969/j.issn.0258-2724.2015.04.011
    [16]YU Xin, LI Yingtao, LIU Yun. Grey Target Optimization of Waterproof Adhesive Material for Concrete Bridge Deck Pavement Based on Mechanical Analysis[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 1086-1091. doi: 10.3969/j.issn.0258-2724.2012.06.028
    [17]WANG Hailong|LIChaohong|XUGuangxing, . Mesoscopic Numerical Simulation of Bond Behavior of Ribbed Bars and Concrete[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 365-372. doi: 10.3969/j.issn.0258-2724.2011.03.002
    [18]WANG Jian, YAO Lingkan, JIANG Liangwei. Seismic Deformation and Failure Modes and Mechanism of Soil Mass[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 196-202. doi: 10. 3969/ j. issn. 0258-2724.
    [19]LIU Yan-hui, ZHAO Shi-chun. Experimental Research on Seismic Fortification Properties of Unbonded Prestressed Concrete Frames[J]. Journal of Southwest Jiaotong University, 2003, 16(6): 647-650.
  • Cited by

    Periodical cited type(8)

    1. 马健,熊江东,苏官林,段春雨,苗玲,李立峰. 局部加高的UHPC免模板湿接缝抗弯模型试验. 铁道建筑. 2024(09): 68-75 .
    2. 杨洋,肖博文,李洪舟,张靖航,邹有宝,黄敦文,彭晖. 粗骨料对超高性能混凝土中钢筋黏结性能的影响. 交通科学与工程. 2024(05): 62-69 .
    3. 王炜. 现浇混凝土墙体构筑物钢筋保护层控制方法研究——以嘉兴市域外配水市区分质供水一期工程为例. 住宅产业. 2023(01): 73-76 .
    4. 郑七振,农德才,龙莉波,马跃强,陈刚. 基于超高性能水泥基复合材料连接的预制装配式混凝土剪力墙抗震性能试验研究. 建筑结构. 2022(06): 1-9+60 .
    5. 高立强,王敏,王康宁. 预制NC拼装梁粗骨料UHPC湿接缝抗弯性能研究. 桥梁建设. 2022(02): 82-88 .
    6. 王诗涵,黄声涛,隽平,唐玉婷,戚家南. 高强钢筋与UHPC界面粘结性能试验研究. 四川建材. 2022(04): 19-21+29 .
    7. 吴越,黄靓. UHPC锚固接头黏结性能试验研究. 混凝土. 2022(11): 183-187 .
    8. 钟蕴为,吴永魁,文许高媛,邹尹. 超高性能混凝土(UHPC)基本性能研究综述. 混凝土与水泥制品. 2021(09): 1-4 .

    Other cited types(23)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 53.5 %FULLTEXT: 53.5 %META: 43.1 %META: 43.1 %PDF: 3.4 %PDF: 3.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.6 %其他: 9.6 %其他: 0.3 %其他: 0.3 %China: 0.2 %China: 0.2 %[]: 0.2 %[]: 0.2 %上海: 2.0 %上海: 2.0 %东莞: 0.5 %东莞: 0.5 %东营: 0.3 %东营: 0.3 %临汾: 0.3 %临汾: 0.3 %六安: 0.2 %六安: 0.2 %北京: 2.7 %北京: 2.7 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南宁: 0.7 %南宁: 0.7 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %合肥: 0.2 %合肥: 0.2 %合肥市: 0.2 %合肥市: 0.2 %哥伦布: 0.3 %哥伦布: 0.3 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.3 %大连: 0.3 %天津: 0.7 %天津: 0.7 %太原: 0.5 %太原: 0.5 %巴格达: 0.3 %巴格达: 0.3 %常州: 0.2 %常州: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.3 %广州: 0.3 %张家口: 1.2 %张家口: 1.2 %成都: 0.7 %成都: 0.7 %扬州: 1.7 %扬州: 1.7 %昆明: 0.3 %昆明: 0.3 %杭州: 0.2 %杭州: 0.2 %池州: 0.8 %池州: 0.8 %洛杉矶: 0.3 %洛杉矶: 0.3 %洛阳: 0.3 %洛阳: 0.3 %淄博: 0.2 %淄博: 0.2 %温州: 0.3 %温州: 0.3 %漯河: 3.5 %漯河: 3.5 %石家庄: 1.4 %石家庄: 1.4 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 24.7 %芒廷维尤: 24.7 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.3 %苏州: 0.3 %葵涌: 1.2 %葵涌: 1.2 %衡水: 0.5 %衡水: 0.5 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.2 %襄阳: 0.2 %西宁: 31.1 %西宁: 31.1 %西安: 1.2 %西安: 1.2 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.2 %赣州: 0.2 %邢台: 0.3 %邢台: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.7 %郑州: 1.7 %重庆: 0.2 %重庆: 0.2 %长沙: 4.2 %长沙: 4.2 %青岛: 0.3 %青岛: 0.3 %其他其他China[]上海东莞东营临汾六安北京十堰南京南宁南昌南通合肥合肥市哥伦布唐山嘉兴大连天津太原巴格达常州常德广州张家口成都扬州昆明杭州池州洛杉矶洛阳淄博温州漯河石家庄秦皇岛芒廷维尤芝加哥苏州葵涌衡水衡阳衢州襄阳西宁西安贵阳赣州邢台邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views(408) PDF downloads(27) Cited by(31)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return