• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Tao, ZHANG Zhuang, ZHAO Kangfa, SHAO Kun, YOU Yonghua, YI Zhengming, HE Zhu, WU Da. Numerical Modeling of Dynamic Temperature Field for Air-Cooling Traction Transformers with Forced Oil Circulation[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 976-981, 999. doi: 10.3969/j.issn.0258-2724.20200824
Citation: WANG Tao, ZHANG Zhuang, ZHAO Kangfa, SHAO Kun, YOU Yonghua, YI Zhengming, HE Zhu, WU Da. Numerical Modeling of Dynamic Temperature Field for Air-Cooling Traction Transformers with Forced Oil Circulation[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 976-981, 999. doi: 10.3969/j.issn.0258-2724.20200824

Numerical Modeling of Dynamic Temperature Field for Air-Cooling Traction Transformers with Forced Oil Circulation

doi: 10.3969/j.issn.0258-2724.20200824
  • Received Date: 08 Dec 2020
  • Rev Recd Date: 11 May 2021
  • Available Online: 16 Jul 2022
  • Publish Date: 14 May 2021
  • The thermal dissipation of traction transformers is involved in the conjugate heat transfer between the cooling oil and windings along with the secondary heat release of the heated oil delivered to an oil cooler. To simulate the temporal and spatial temperature variations of traction transformers accurately, the distributed parameter models of traction transformer (including windings and oil) and oil cooler are set up based on the one-dimensional assumption, respectively. The two models are integrated with the lumped parameter ones of oil pump and pipelines. A mathematical model of dynamic temperature field is obtained for the traction transformers. Besides, an iteration algorithm is proposed for the numerical solution. For model validation, a temperature rise experiment is performed on a traction transformer and its cooling system. The results show that the transition time for a stable transformer oil temperature obtained by current model (58 min) meets well with experimental measurement (61 min). The predicted average temperatures of oil and windings under the stable running condition take the discrepancies of 1.3 ℃ and 2.5 ℃ against experimental counterparts, respectively. The current work can be used for the optimal design of traction transformers.

     

  • [1]
    兰云飞, 仝泽柳, 石瑛. 高速铁路概论[M]. 北京: 北京交通大学出版社, 2016.
    [2]
    杨斯泐,郭晨曦,李强. 动车组牵引变压器绕组变形测试技术研究[J]. 铁道机车车辆,2018,38(5): 61-65,76. doi: 10.3969/j.issn.1008-7842.2018.05.15

    YANG Sile, GUO Chenxi, LI Qiang. Research on test technology of the winding deformation of EMU traction transformers[J]. Railway Locomotive & Car, 2018, 38(5): 61-65,76. doi: 10.3969/j.issn.1008-7842.2018.05.15
    [3]
    高波,许竟,杨雁,等. 车载牵引变压器油纸绝缘热老化特性及机理研究[J]. 铁道学报,2020,42(7): 80-86.

    GAO Bo, XU Jing, YANG Yan, et al. Thermal aging characteristics and mechanism analysis of oil-paper insulation in on-board traction transformer[J]. Journal of the China Railway Society, 2020, 42(7): 80-86.
    [4]
    IEEE S A.IEEE guide for loading mineral-oil-immersed transformers and step-voltage regulators: IEEE Std C57.91—2011[S]. New York: IEEE, 2011.
    [5]
    SWIFT G, MOLINSKI T S, LEHN W. A fundamental approach to transformer thermal modeling—part I: theory and equivalent circuit[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 171-175. doi: 10.1109/61.915478
    [6]
    SWIFT G, MOLINSKI T S, BRAY R, et al. A fundamental approach to transformer thermal modeling—part II:field verification[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 176-180. doi: 10.1109/61.915479
    [7]
    滕黎,陈伟根,孙才新. 油浸式电力变压器动态热路改进模型[J]. 电网技术,2012,36(4): 236-241.

    TENG Li, CHEN Weigen, SUN Caixin. An improved dynamic thermal circuit model of oil-immersed power transformer[J]. Power System Technology, 2012, 36(4): 236-241.
    [8]
    陈伟根,苏小平,孙才新,等. 基于有限体积法的油浸式变压器绕组温度分布计算[J]. 电力自动化设备,2011,31(6): 23-27. doi: 10.3969/j.issn.1006-6047.2011.06.006

    CHEN Weigen, SU Xiaoping, SUN Caixin, et al. Temperature distribution calculation based on FVM for oil-immersed power transformer windings[J]. Electric Power Automation Equipment, 2011, 31(6): 23-27. doi: 10.3969/j.issn.1006-6047.2011.06.006
    [9]
    苏小平,陈伟根,胡启元,等. 基于解析-数值技术的变压器绕组温度分布计算[J]. 高电压技术,2014,40(10): 3164-3170.

    SU Xiaoping, CHEN Weigen, HU Qiyuan, et al. Calculation for transformer winding temperature distribution by numerical analytical technology[J]. High Voltage Engineering, 2014, 40(10): 3164-3170.
    [10]
    谢蓉,张星,关亮,等. 强迫油循环冷却变压器内部温度场数值模拟[J]. 电力科学与工程,2012,28(10): 47-52.

    XIE Rong, ZHANG Xing, GUAN Liang, et al. Numerical simulation on temperature field in forced-directed oil cooling transformer[J]. Electric Power Science and Engineering, 2012, 28(10): 47-52.
    [11]
    TORRIANO F, CHAABAN M, PICHER P. Numerical study of parameters affecting the temperature distribution in a disc-type transformer winding[J]. Applied Thermal Engineering, 2010, 30(14/15): 2034-2044.
    [12]
    WAKIL N E, CHERECHES N C, PADET J. Numerical study of heat transfer and fluid flow in a power transformer[J]. International Journal of Thermal Sciences, 2006, 45(6): 615-626. doi: 10.1016/j.ijthermalsci.2005.09.002
    [13]
    YOU Y H, YU S, TIAN Y Q, et al. A numerical study on the unsteady heat transfer in active regenerator with multi-layer refrigerants of rotary magnetic refrigerator near room temperature[J]. International Journal of Refrigeration, 2016, 65: 238-249. doi: 10.1016/j.ijrefrig.2016.02.002
    [14]
    ZHANG J H, LI X G. Oil cooling for disk-type transformer windings—part 1: theory and model development[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1318-1325. doi: 10.1109/TPWRD.2006.871019
    [15]
    ISMAIL L S, VELRAJ R. Studies on Fanning friction (f) and colburn (j) factors of offset and wavy fins compact plate fin heat exchanger—a CFD approach[J]. Numerical Heat Transfer, Part A: Applications, 2009, 56(12): 987-1005. doi: 10.1080/10407780903507957
    [16]
    KAYS W M, LONDON A L. 紧凑式热交换器[M]. 宣益民, 张后雷, 译. 北京: 科学出版社, 1997.
    [17]
    史美中, 王中铮. 热交换器原理与设计[M]. 4版. 南京: 东南大学出版社, 2009.
    [18]
    TSILI M A, AMOIRALIS E I, KLADAS A G, et al. Power transformer thermal analysis by using an advanced coupled 3D heat transfer and fluid flow FEM model[J]. International Journal of Thermal Sciences, 2012, 53: 188-201. doi: 10.1016/j.ijthermalsci.2011.10.010
  • Relative Articles

    [1]ZHANG Liyan, KONG Zongze, BIAN Liding. Load Forecasting and Transformer Capacity Optimization for Newly-built Traction Substation[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 847-855. doi: 10.3969/j.issn.0258-2724.20190429
    [2]SUN Keguo, LI Si, XU Weiping, XIAO Zhifei, LI Haobo, XU Yuping. Influence of Thermal Conductivity on Temporal and Spatial Distributions of Temperature Filed in Cold Region Tunnel[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 256-264, 289. doi: 10.3969/j.issn.0258-2724.20180530
    [3]ZHANG Heshan, XU Jin, DENG Zhaoxiang, JIANG Yanjun. Temperature Field of in-Wheel Motor Using Coupled Multi-physics Domain Solution[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 76-83, 91. doi: 10.3969/j.issn.0258-2724.20170263
    [4]HU Jiexin, XIE Liyang, YU Haiyang, LIU Longxi, YIN Wei, HU Zhiyong. Virtual Experiments to Predict Bolster Fatigue Lifetime Based on FEM Model Validated by Static Tests[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 106-112. doi: 10.3969/j.issn.0258-2724.20160536
    [5]DONG Xuanchang, QU Fengrui, LI Yanfei, WANG Yiqing. Simulation Analysis and Verification on Three-Dimensional Temperature Field of Strain Clamps for Overhead Lines[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 997-1004. doi: 10.3969/j.issn.0258-2724.20180610
    [6]ZHOU Lijun, LI Jinping, YANG Yang, JIANG Junfei, WANG Lujia, WANG Dongyang. Correlation between Winding Temperature Rise and Oil Flow in Traction Transformer[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 487-494. doi: 10.3969/j.issn.0258-2724.2016.03.008
    [7]YANG Jie, YANG Ji, XU Jiang, LIU Yujie, HUANG Nan. Verification of Stent Mechanical Formulas by “Planar Stent” Experiment[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 519-524. doi: 10.3969/j.issn.0258-2724.2014.03.023
    [8]XIE Shaofeng, LI Qunzhan. Design of Balance Traction Transformer Capacity in Co-phase Traction Power Supply System[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 576-581. doi: 10.3969/j.issn.0258-2724.2014.04.003
    [9]ZHOU Lijun, HUANG Xiaofeng, LI Xianlang, ZHANG Zhigang. On-line Monitoring Method for Short-Circuit Reactance of V/X Wiring Traction Transformer[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 750-755. doi: 10.3969/j.issn.0258-2724.2013.04.024
    [10]LIU Jiaxin, QIN Sicheng, XU Zhenyuan, ZHANG Ao, XI Yu, ZHANG Xuelin. Numerical Simulation of Heat Exchange Performance of Radiator Module in Construction Vehicles[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 623-628. doi: 10.3969/j.issn.0258-2724.2012.04.014
    [11]CHEN Xiao'an, SHANG Fujun, SONG Shuncheng. Numerical Simulation of Temperature Distribution of Induction Plasma Torch in Preparation of Superfine Powder[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 271-276. doi: 10.3969/j.issn.0258-2724.2011.02.016
    [12]WU Jianghong, WANG Xihui, TANG Yongbo, CHEN Yungui. Experimental Investigation on Periodical Temperature Field in Active Magnetic Regenerator of Rotary Magnetic Refrigerator[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 743-747,793.
    [13]LI Jinping, CHEN Jianjun, ZHOU Chuanjun. Perturbed Numerical Algorithm of Nonprobabilistic Convex Set Theoretical Models for Temperature Field[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 101-105.
    [14]ZHAO Xin, WEN Ze-feng, JIN Xue-song. Numerical Simulation of Temperature Field in Process of Casting Solidification[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 15-19.
    [15]GUO Lei, GAO Shibin, LI Qunzhan. Protection of Impedance-Matching Balance Traction Transformer Based on Transformer Model[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 737-742.
    [16]CAO Xiao-Hong, Hu-Jian-Beng. On-Line Monitoring of Early Insulating Faults in Traction Transformer[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 402-406.
    [17]Liu Mingguang, Kong Zhongqiu, Gao Shiqin. On-Line Monitoring of Early Insulating Faults in Traction Transformer[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 446-451.
    [18]LIU Meng-Guang, KONG Zhong-Qiu, Gao-Shi-Qi. On-Line Monitoring of Early Insulating Faults in Traction Transformer[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 446-451.
  • Cited by

    Periodical cited type(3)

    1. 刘浩,张丽丽. 基于单神经元PID的建筑施工主变压器状态自动控制研究. 电子设计工程. 2025(06): 96-99 .
    2. 邵坤,游永华,易正明. 牵引变压器强油风冷散热动态仿真与控制. 城市轨道交通研究. 2025(03): 76-82 .
    3. 王劭,赵建利,白全新,寇正. 强迫油循环风冷变压器温度场三维分布仿真计算. 浙江电力. 2021(10): 116-122 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.3 %FULLTEXT: 36.3 %META: 58.3 %META: 58.3 %PDF: 5.4 %PDF: 5.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.6 %其他: 10.6 %Nonthaburi: 0.1 %Nonthaburi: 0.1 %[]: 0.3 %[]: 0.3 %上海: 0.8 %上海: 0.8 %东莞: 1.2 %东莞: 1.2 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九江: 0.1 %九江: 0.1 %佛山: 0.4 %佛山: 0.4 %北京: 7.1 %北京: 7.1 %十堰: 0.4 %十堰: 0.4 %南京: 2.8 %南京: 2.8 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %合肥: 1.1 %合肥: 1.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸宁: 0.1 %咸宁: 0.1 %咸阳: 0.1 %咸阳: 0.1 %大兴安岭地区: 0.1 %大兴安岭地区: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.4 %大连: 0.4 %天津: 1.2 %天津: 1.2 %安康: 0.3 %安康: 0.3 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.5 %宣城: 0.5 %山景城: 0.4 %山景城: 0.4 %巴音郭楞: 0.1 %巴音郭楞: 0.1 %常州: 0.4 %常州: 0.4 %常德: 0.1 %常德: 0.1 %平凉: 0.1 %平凉: 0.1 %平顶山: 0.4 %平顶山: 0.4 %广州: 0.4 %广州: 0.4 %弗吉: 0.1 %弗吉: 0.1 %张家口: 3.1 %张家口: 3.1 %徐州: 0.4 %徐州: 0.4 %成都: 2.0 %成都: 2.0 %扬州: 1.3 %扬州: 1.3 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %杭州: 0.4 %杭州: 0.4 %株洲: 0.1 %株洲: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 2.6 %武汉: 2.6 %池州: 0.8 %池州: 0.8 %沈阳: 0.9 %沈阳: 0.9 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %济宁: 0.1 %济宁: 0.1 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %漯河: 1.9 %漯河: 1.9 %烟台: 0.3 %烟台: 0.3 %石家庄: 4.8 %石家庄: 4.8 %红河: 0.3 %红河: 0.3 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 7.1 %芒廷维尤: 7.1 %芝加哥: 0.4 %芝加哥: 0.4 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.3 %襄阳: 0.3 %西宁: 32.4 %西宁: 32.4 %西安: 0.5 %西安: 0.5 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.5 %贵阳: 0.5 %赣州: 0.1 %赣州: 0.1 %运城: 0.9 %运城: 0.9 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 3.5 %长沙: 3.5 %青岛: 0.7 %青岛: 0.7 %驻马店: 0.1 %驻马店: 0.1 %其他Nonthaburi[]上海东莞临汾乌鲁木齐九江佛山北京十堰南京南昌南通合肥呼和浩特咸宁咸阳大兴安岭地区大庆大连天津安康宝鸡宣城山景城巴音郭楞常州常德平凉平顶山广州弗吉张家口徐州成都扬州揭阳新乡杭州株洲格兰特县桂林武汉池州沈阳洛阳济南济宁深圳温州湖州漯河烟台石家庄红河绍兴芒廷维尤芝加哥衡阳襄阳西宁西安诺沃克贵阳赣州运城遵义邯郸郑州重庆长春长沙青岛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(434) PDF downloads(40) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return