• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
CHEN Jing, GAO Rui, LIU Yangzepeng, SHI Zhizheng, ZHANG Ronglong. Effect of Clay Contamination on Stress-Dilatancy Relationships of Ballast Aggregate[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1201-1207. doi: 10.3969/j.issn.0258-2724.20200627
Citation: CHEN Jing, GAO Rui, LIU Yangzepeng, SHI Zhizheng, ZHANG Ronglong. Effect of Clay Contamination on Stress-Dilatancy Relationships of Ballast Aggregate[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1201-1207. doi: 10.3969/j.issn.0258-2724.20200627

Effect of Clay Contamination on Stress-Dilatancy Relationships of Ballast Aggregate

doi: 10.3969/j.issn.0258-2724.20200627
  • Received Date: 14 Sep 2020
  • Rev Recd Date: 21 Apr 2021
  • Available Online: 03 Aug 2022
  • Publish Date: 29 Apr 2021
  • Clay fines from subgrade would gradually intrude into the ballast layer under cyclic loadings of passing trains, which would reduce the bearing capacity and impede the free drainage of track beds. A series of large-scale direct shear tests were carried out to investigate the strength and deformation characteristics and stress-dilatancy relationship of the geogrid-reinforced and unreinforced ballast contaminated by clay fines. The results showed that the strength and normal displacement of ballast aggregate decrease with an increase in the contamination level. The stress ratio of clean ballast is linear with the dilatancy ratio, while the addition of clay fines would increase the plasticity of the ballast aggregate. For fouled ballast in the peak state of shear stress, the dilatancy ratio of aggregate increases while the shear strength decreases, and a second-order polynomial relationship between stress ratio and dilatancy ratio is observed. Under a higher normal pressure, the aggregates have a lower dilatancy ratio. The reduction in the dilatancy rate and the shear strength of clay-contaminated ballast can be remedied by the inclusion of geogrid in the aggregate.

     

  • loading
  • [1]
    INDRARATNA B, SINGH M, NGUYEN T T. The mechanism and effects of subgrade fluidisation under ballasted railway tracks[J]. Railway Engineering Science, 2020, 28(2): 113-128. doi: 10.1007/s40534-020-00210-1
    [2]
    TENNAKOON N, INDRARATNA B. Behaviour of clay-fouled ballast under cyclic loading[J]. Géotechnique, 2014, 64(6): 502-506.
    [3]
    INDRARATNA B, TENNAKOON N, NIMBALKAR S, et al. Behaviour of clay-fouled ballast under drained triaxial testing[J]. Géotechnique, 2013, 63(5): 410-419.
    [4]
    NGO T, INDRARATNA B. Analysis of deformation and degradation of fouled ballast: experimental testing and DEM modeling[J]. International Journal of Geomechanics, 2020, 20(9): 06020020.1-06020020.8.
    [5]
    HUANG H, TUTUMLUER E, DOMBROW W. Laboratory characterization of fouled railroad ballast behavior[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2117(1): 93-101. doi: 10.3141/2117-12
    [6]
    DANESH A, PALASSI M, MIRGHASEMI A A. Effect of sand and clay fouling on the shear strength of railway ballast for different ballast gradations[J]. Granular Matter, 2018, 20(3): 1-14.
    [7]
    TRINH V N, TANG A M, CUI Y J, et al. Mechanical characterisation of the fouled ballast in ancient railway track substructure by large-scale triaxial tests[J]. Soils and Foundations, 2012, 52(3): 511-523. doi: 10.1016/j.sandf.2012.05.009
    [8]
    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 269(1339): 500-527.
    [9]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. Manhattan: John Wiley & Sons, 1976.
    [10]
    XIAO Y, MENG M Q, CHEN Q S, et al. Friction and dilatancy angles of granular soils incorporating effects of shearing modes[J]. International Journal of Geomechanics, 2018, 18(11): 06018027.1-06018027.9.
    [11]
    XIAO Y, LIU H L, LIU H, et al. Strength and dilatancy behaviors of dense modeled rockfill material in general stress space[J]. International Journal of Geomechanics, 2016, 16(5): 04016015.1-04016015.15.
    [12]
    DOŁŻYK-SZYPCIO K. Stress-dilatancy relationship for railway ballast[J]. Studia Geotechnica et Mechanica, 2018, 40(2): 79-85. doi: 10.2478/sgem-2018-0018
    [13]
    SZYPCIO Z. Stress-dilatancy of gravel for triaxial compression tests[J]. Annals of Warsaw University of Life Sciences-SGGW. Land Reclamation, 2018, 50(2): 119-128. doi: 10.2478/sggw-2018-0010
    [14]
    DOŁŻYK-SZYPCIO K. Direct shear test for coarse granular soil[J]. International Journal of Civil Engineering, 2019, 17(12): 1871-1878. doi: 10.1007/s40999-019-00417-2
    [15]
    SAROJINIAMMA B K, INDRARATNA B, VINOD J S. A semi-empirical dilatancy model for ballast fouled with plastic fines[J]. Geomechanics and Geoengineering, 2019, 14(1): 12-17. doi: 10.1080/17486025.2018.1476737
    [16]
    陈静,高睿,刘洋泽鹏,等. 不同脏污质对格栅加筋道砟性能的影响[J]. 西南交通大学学报,2022,57(1): 200-206.

    CHEN Jing, GAO Rui, LIU Yangzepeng, et al. Influence of various fouling materials on geogrid-reinforced ballast performance[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 200-206.
    [17]
    铁道科学研究院. 铁路碎石道砟: TBT 2140—2008. 北京: 中国铁道出版社, 2008.
    [18]
    MCDOWELL G R, HARIRECHE O, KONIETZKY H, et al. Discrete element modelling of geogrid-reinforced aggregates[J]. Proceedings of the Institution of Civil Engineers−Geotechnical Engineering, 2006, 159(1): 35-48. doi: 10.1680/geng.2006.159.1.35
    [19]
    INDRARATNA B, SU L J, RUJIKIATKAMJORN C. A new parameter for classification and evaluation of railway ballast fouling[J]. Canadian Geotechnical Journal, 2011, 48(2): 322-326. doi: 10.1139/T10-066
    [20]
    SELIG E T, WATERS J M. Track geotechnology and substructure management[M]. London: Homas Telford Publishing, 1994
    [21]
    FELDMAN F, NISSEN D. Alternative testing method for the measurement of ballast fouling: percentage void contamination[C]//CORE 2002, Cost Efficient Railways Through Engineering, Conference on Railway Engineering. Wollongong: [s.n.], 2002: 10-13.
    [22]
    BIABANI M M, INDRARATNA B, NIMBALKAR S. Assessment of interface shear behaviour of sub-ballast with geosynthetics by large-scale direct shear test[J]. Procedia Engineering, 2016, 143: 1007-1015. doi: 10.1016/j.proeng.2016.06.094
    [23]
    高睿,石知政,刘洋泽鹏,等. 土工格栅对受污道砟直剪特性影响的试验研究[J]. 西南交通大学学报,2021,56(6): 1185-1191.

    GAO Rui, SHI Zhizheng, LIU Yangzepeng, et al. Experimental study on effect of geogrid on direct shear behavior of contaminated ballast[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1185-1191.
    [24]
    INDRARATNA B, NGO N T, RUJIKIATKAMJORN C. Behavior of geogrid-reinforced ballast under various levels of fouling[J]. Geotextiles and Geomembranes, 2011, 29(3): 313-322. doi: 10.1016/j.geotexmem.2011.01.015
    [25]
    SUN Y F, GAO Y F, CHEN C. Critical-state fractional model and its numerical scheme for isotropic granular soil considering state dependence[J]. International Journal of Geomechanics, 2019, 19(3): 04019001.1-04019001.14.
    [26]
    BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78.
    [27]
    INDRARATNA B, NGO N T, RUJIKIATKAMJORN C, et al. Behavior of fresh and fouled railway ballast subjected to direct shear testing: discrete element simulation[J]. International Journal of Geomechanics, 2014, 14(1): 34-44. doi: 10.1061/(ASCE)GM.1943-5622.0000264
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views(326) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return