• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHOU Hongfu, WEI Yuting. Mechanical Parameters of Concealed Fault Rock Mass on Nujiang River[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 166-172, 199. doi: 10.3969/j.issn.0258-2724.20200314
Citation: CHEN Longwei, WU Xiaoyang, TANG Chuan. Simplified Prediction Method for PGA Amplification Factors Corrected by Site Conditions[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 173-181. doi: 10.3969/j.issn.0258-2724.20200508

Simplified Prediction Method for PGA Amplification Factors Corrected by Site Conditions

doi: 10.3969/j.issn.0258-2724.20200508
  • Received Date: 04 Aug 2020
  • Rev Recd Date: 25 Nov 2020
  • Available Online: 25 Dec 2020
  • Publish Date: 25 Dec 2020
  • Peak ground-motion acceleration (PGA) directly reflects ground shaking intensity with the advantages in conceptual clarity and engineering application. Prediction of PGA, along with site condition correction, needs to be handled in site-specific seismic design. In this work, 32 stations and the earthquake data recorded are collected from the KiK-net strong motion array, Japan, so as to propose a simplified method to predict PGA amplification factors (fPGA) corrected by site condition. Linear and quadratic empirical formulae of the fPGA possibility model parameters with respect to the combinations of site characteristic parameters are obtained via regression analysis. Using the fPGA model, ground surface PGA values, corrected by site conditions, can be predicted under different exceedance probability levels. Data analysis indicates that fPGA is variable but can be simulated by a log-normally distributed function, of which mean and standard deviation are less correlated with a single site characteristic parameter but have good correlation with the linear combinations of the site characteristic parameters. The reasonable agreement between the predictions and records testifies the feasibility of the proposed method.

     

  • [1]
    李晰,何澜,李倩,等. 脉冲型地震动对CFST拱桥抗震性能的影响分析[J]. 西南交通大学学报,2019,54(4): 731-740. doi: 10.3969/j.issn.0258-2724.20180855

    LI Xi, HE Lan, LI Qian, et al. Effect of pule-like ground motion on seismic performance of concrete-filled steel tubular arch bridge[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 731-740. doi: 10.3969/j.issn.0258-2724.20180855
    [2]
    李小军. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,2013,35(S2): 21-29.

    LI Xiaojun. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 21-29.
    [3]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国地震动参数区划图: GB 18306—2015[S]. 北京: 中国标准出版社, 2016.
    [4]
    ANDREOTTI G, FAMÀ A, LAI C G. Hazard-dependent soil factors for site-specific elastic acceleration response spectra of Italian and European seismic building codes[J]. Bulletin of Earthquake Engineering, 2018, 16(12): 5769-5800. doi: 10.1007/s10518-018-0422-9
    [5]
    张红才,金星,李军,等. 地震预警系统研究及应用进展[J]. 地球物理学进展,2013,28(2): 706-719. doi: 10.6038/pg20130219

    ZHANG Hongcai, JIN Xing, LI Jun, et al. Progress of research and application of earthquake early warning system (EEWs)[J]. Progress in Geophysics, 2013, 28(2): 706-719. doi: 10.6038/pg20130219
    [6]
    俞言祥,汪素云. 青藏高原东北地区水平向基岩加速度峰值与反应谱衰减关系[J]. 地震学报,2004,26(6): 591-600. doi: 10.3321/j.issn:0253-3782.2004.06.004

    YU Yanxiang, WANG Suyun. Attenuation relations for horizontal peak ground acceleration and response spectrum in northeastern Tibetan Plateau region[J]. Acta Seismologica Sinica, 2004, 26(6): 591-600. doi: 10.3321/j.issn:0253-3782.2004.06.004
    [7]
    BOORE D M, ATKINSON G M. Ground-motion prediction equations for the average horizontal com- ponent of PGA,PGV,and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s[J]. Earthquake Spectra, 2008, 24(1): 99-138. doi: 10.1193/1.2830434
    [8]
    DU K, DING B R, LUO H, et al. Relationship between peak ground acceleration,peak ground velocity,and macroseismic intensity in Western China[J]. Bulletin of the Seismological Society of America, 2019, 109(1): 284-297. doi: 10.1785/0120180216
    [9]
    陈龙伟,陈玉祥,袁晓铭. 基于强震数据的场地反应项分析及地震动参数预测[J]. 土木工程学报,2019,52(2): 97-105,117.

    CHEN Longwei, CHEN Yuxiang, YUAN Xiaoming. Site-term analysis and site-specific ground-motion parameters prediction based on strong motion data[J]. China Civil Engineering Journal, 2019, 52(2): 97-105,117.
    [10]
    FACCIOLI E, PAOLUCCI R, VANINI M. Evaluation of probabilistic site-specific seismic-hazard methods and associated uncertainties,with applications in the Po Plain,northern Italy[J]. Bulletin of the Seismological Society of America, 2015, 105(5): 2787-2807. doi: 10.1785/0120150051
    [11]
    SHINGAKI Y, GOTO H, SAWADA S. Evaluation performance for site amplification factors:S-wave impedance vs. VS30[J]. Soils and Foundations, 2018, 58(4): 911-927. doi: 10.1016/j.sandf.2018.05.001
    [12]
    TAVAKOLI H, SOLEIMANI KUTANAEI S. Evaluation of effect of soil characteristics on the seismic amplification factor using the neural network and reliability concept[J]. Arabian Journal of Geosciences, 2015, 8(6): 3881-3891. doi: 10.1007/s12517-014-1458-z
    [13]
    HASANCEBI N, ULUSAY R. Evaluation of site amplification and site period using different methods for an earthquake-prone settlement in Western Turkey[J]. Engineering Geology, 2006, 87(1/2): 85-104.
    [14]
    REGNIER J, BONILLA L F, BERTRAND E, et al. Influence of the VS profiles beyond 30 m depth on linear site effects:assessment from the KiK-net data[J]. Bulletin of the Seismological Society of America, 2014, 104(5): 2337-2348. doi: 10.1785/0120140018
    [15]
    SANDıKKAYA M A, AKKAR S, BARD P Y. A probabilistic procedure to describe site amplification factors for seismic design codes[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105068. doi: 10.1016/j.soildyn.2018.01.050
    [16]
    中国建筑科学研究院. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.
    [17]
    李瑞山,袁晓铭. 成层场地基本周期简化计算方法研究[J]. 岩土力学,2019,40(8): 3227-3235.

    LI Ruishan, YUAN Xiaoming. Simplified calculation method for the fundamental period of layered soil sites[J]. Rock and Soil Mechanics, 2019, 40(8): 3227-3235.
    [18]
    WANG Suyang, SHI Yang, JIANG Weiping, et al. Estimating site fundamental period from shear-wave velocity profile[J]. Bulletin of the Seismological Society of America, 2018, 108(6): 3431-3445. doi: 10.1785/0120180103
    [19]
    金井清. 工程地震学[M]. 常宝琦, 张虎男, 译. 北京: 地震出版社, 1987.
    [20]
    唐川,陈龙伟. 场地校正的地表PGA放大系数概率模型研究[J]. 工程力学,2020,37(12): 99-113. doi: 10.6052/j.issn.1000-4750.2020.01.0023

    TANG Chuan, CHEN Longwei. Probability modelling of PGA amplification factors corrected by site condi- tions[J]. Engineering Mechanics, 2020, 37(12): 99-113. doi: 10.6052/j.issn.1000-4750.2020.01.0023
    [21]
    BAZZURRO P. Nonlinear soil-site effects in probabilistic seismic-hazard analysis[J]. Bulletin of the Seismological Society of America, 2004, 94(6): 2110-2123. doi: 10.1785/0120030216
  • Relative Articles

    [1]HAN Linfeng, WANG Pingyi, MU Ping, WANG Meili, WU Guomao. Experimental Study on Near-Field Characteristics of Impulse Waves Generated by Three-Dimensional Rock Slide[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 346-352. doi: 10.3969/j.issn.0258-2724.20200078
    [2]XIN Ren, WANG Meiyao, WANG Qinglin, WANG Yan. Experimental Investigation of Masonry Shear Strength Under Compression[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1043-1049. doi: 10.3969/j.issn.0258-2724.20190444
    [3]LIU Youneng, HUANG Runqiu, LIU Enlong, LIAO Mengke. Influence of Freezing-Thawing Cycles on Mechanical Properties of Tailing Soil at Yunnan-Guizhou Plateau[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1052-1059. doi: 10.3969/j.issn.0258-2724.20180520
    [4]XU Wensong, ZHAO Guangming, MENG Xiangrui, LI Yingming, CAI Jinlong, GAO Liang. Test Study on True-Triaxial Loading and Unloading for Marble with Unloaded Single Face[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 526-534. doi: 10.3969/j.issn.0258-2724.20180542
    [5]ZHANG Yanjun, NIAN Tingkai, WANG Liang, TANG Jun. Research on Similar Materials for Physical Model Tests of Rock Slopes[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 55-60, 72. doi: 10.3969/j.issn.0258-2724.20160366
    [6]CEN Weijun, CHEN Sining, Deng Tongchun, XIONG Kun. Algorithm Development and Application of Double-Yield-Surface Elastoplastic Constitutive Model for Earth-Rock Materials[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 582-588. doi: 10.3969/j.issn.0258-2724.2018.03.020
    [7]JING Guoqing, HUANG Hongmei, SHI Xiaoyi, CAI Xiaopei. Triaxial Test and DEM Analysis of Ballast Aggregate with Angularity Breakage[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 216-221. doi: 10.3969/j.issn.0258-2724.2017.02.002
    [8]WANG Zhen-ling, LIN Yong-jun, QIAN Yong-jiu. ExperimentalResearch on Shear Properties of New-to-O ld Concrete Interface[J]. Journal of Southwest Jiaotong University, 2005, 18(5): 600-604.
    [9]ZHOUJiang-ping, PENG Xiong-zhi. Investigation on Size Effect of Shear Strength of Soil[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 77-81.
    [10]ZHOU Ying-hua, ZHOU De-pei, YANG Tao, FENG Zhi-jun. Experimental Investigation on Shear Strength Parameters of Jointed Rock Mass[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 73-76.
    [11]YUAN Wen-zhong, YUZhi-qiang, XIE Tao. Vertical Bearing Capacity of Rock-Socketed Piles Influenced by Batholith Strength[J]. Journal of Southwest Jiaotong University, 2003, 16(2): 178-182.
  • Cited by

    Periodical cited type(2)

    1. 周洪福,张卓婷,韦玉婷. 基于滑体自重效应的滑带土强度参数取值方法. 岩石力学与工程学报. 2022(05): 1045-1053 .
    2. 柳旻,夏玉云,杨晓鹏,王冉,郭天森,程泳祥. 老挝南俄四水电站边坡坝基F22断层工程特性研究及处理措施. 土工基础. 2022(05): 718-723 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 39.3 %FULLTEXT: 39.3 %META: 56.6 %META: 56.6 %PDF: 4.1 %PDF: 4.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.7 %其他: 5.7 %China: 0.5 %China: 0.5 %上海: 0.2 %上海: 0.2 %东莞: 0.5 %东莞: 0.5 %临汾: 0.5 %临汾: 0.5 %九江: 0.5 %九江: 0.5 %北京: 4.4 %北京: 4.4 %南京: 1.8 %南京: 1.8 %南宁: 0.2 %南宁: 0.2 %南通: 0.5 %南通: 0.5 %台州: 0.2 %台州: 0.2 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %唐山: 0.5 %唐山: 0.5 %大连: 0.2 %大连: 0.2 %天津: 0.9 %天津: 0.9 %安康: 0.7 %安康: 0.7 %宣城: 0.2 %宣城: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 2.1 %张家口: 2.1 %徐州: 0.5 %徐州: 0.5 %成都: 3.0 %成都: 3.0 %扬州: 0.2 %扬州: 0.2 %日喀则: 0.2 %日喀则: 0.2 %昆明: 0.5 %昆明: 0.5 %杭州: 0.9 %杭州: 0.9 %武汉: 1.1 %武汉: 1.1 %池州: 0.5 %池州: 0.5 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.5 %洛阳: 0.5 %淄博: 0.2 %淄博: 0.2 %深圳: 0.5 %深圳: 0.5 %温州: 0.2 %温州: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 0.5 %漯河: 0.5 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %自贡: 0.2 %自贡: 0.2 %芒廷维尤: 14.3 %芒廷维尤: 14.3 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.2 %苏州: 0.2 %衡水: 0.5 %衡水: 0.5 %衢州: 0.2 %衢州: 0.2 %西宁: 45.7 %西宁: 45.7 %西安: 0.9 %西安: 0.9 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.2 %达州: 0.2 %运城: 1.4 %运城: 1.4 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.4 %郑州: 1.4 %金华: 0.2 %金华: 0.2 %长沙: 2.3 %长沙: 2.3 %阳泉: 0.5 %阳泉: 0.5 %青岛: 0.5 %青岛: 0.5 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他China上海东莞临汾九江北京南京南宁南通台州合肥呼和浩特唐山大连天津安康宣城广州张家口徐州成都扬州日喀则昆明杭州武汉池州沈阳洛阳淄博深圳温州湖州漯河石家庄福州秦皇岛自贡芒廷维尤芝加哥苏州衡水衢州西宁西安诺沃克贵阳达州运城邯郸郑州金华长沙阳泉青岛齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views(546) PDF downloads(27) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return