Citation: | WANG Zuohu, YAO Yuan, GAO Zhanguang, LI Luowei. Flexural Behavior of GFRP Reinforced Granite Cladding Panels with Undercut Bolt Anchorage[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 229-234. doi: 10.3969/j.issn.0258-2724.20200420 |
To explore the failure mode and bearing capacity of the granite cladding panel under different reinforcements, flexural tests were conducted on the windward and leeward sides of 33 granite cladding panels with undercut bolt anchorage. The joints of the granite cladding panels were reinforced with metal ring, and the panel back was reinforced with glass fiber reinforced plastics (GFRP) in cross, diagonal, horizontal, and vertical paste; then the bearing capacity of the panels was analyzed.The results show that after the panel is reinforced at the joints, the failure mode of the leeward side is improved in the loading direction. Compared with the panel without joint reinforcement, its bearing capacity is increased by 0.50 times. The four GFRP reinforcement modes at the back of the panel can keep its integrity after failure emerges and also improve the bending capacity of the panel windward side in the loading direction by 2.30 times at most, verifying the feasibility of the reinforcement measure of granite cladding panels with undercut bolt anchorage for engineering applications.
[1] |
王明贵,郝锐坤. 背栓式连接石材幕墙抗震试验研究[J]. 建筑结构,2001,31(4): 70.
WANG Minggui, HAO Ruikun. Seismic test study on back-connected stone curtain wall[J]. Building Structure, 2001, 31(4): 70.
|
[2] |
周桂云,徐跃华,王明贵. 大型石材幕墙抗震试验研究[J]. 建筑结构,2003,33(8): 62-63.
ZHOU Guiyun, XU Yuehua, WANG Minggui. Test on anti-seismic ability of big stone curtain wall[J]. Building Structure, 2003, 33(8): 62-63.
|
[3] |
王翠坤,肖从真,赵西安. 幕墙抗震性能试验研究[J]. 建筑结构,2002,32(9): 65-67.
WANG Cuikun, XIAO Congzhen, ZHAO Xi’an. Experimental research on the earthquake-resistant property of curtain wall[J]. Building Structure, 2002, 32(9): 65-67.
|
[4] |
赵君. 大面积幕墙工程中干挂石材背栓安装质量对挂装强度影响的试验研究[J]. 广东土木与建筑,2014(2): 39-41.
ZHAO Jun. Experimental study on the influence of the installation quality of dry-hanging stone undercut anchorage on the mounting strength in large-area curtain wall projects[J]. Guangdong Architecture Civil Engineering, 2014(2): 39-41.
|
[5] |
YEUN K W, HONG K N, KIM J. Development of a retrofit anchor system for remodeling of building exteriors[J]. Structural Engineering and Mechanics, 2012, 44(6): 839-856. doi: 10.12989/sem.2012.44.6.839
|
[6] |
CHANG K K, PARK N W. Development and performance evaluation of under cut anchor stone curtain wall construction method[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2014, 18(4): 138-146. doi: 10.11112/jksmi.2014.18.4.138
|
[7] |
NETO N, DE BRITO J. Validation of an inspection and diagnosis system for anomalies in natural stone cladding (NSC)[J]. Construction and Building Materials, 2012, 30: 224-236. doi: 10.1016/j.conbuildmat.2011.12.032
|
[8] |
NETO N, DE BRITO J. Inspection and defect diagnosis system for natural stone cladding[J]. Journal of Materials in Civil Engineering, 2011, 23(10): 1433-1443. doi: 10.1061/(ASCE)MT.1943-5533.0000314
|
[9] |
MALAGA K, SCHOUENBORG B, GRELK B. Bowing and expansion of natural stone panels marble and limestone testing and assessment[J]. Materiales De Construction, 2008, 58(290): 97-112.
|
[10] |
BEASLEY K J. Latent building facade failures[C]//Sixth Congress on Forensic Engineering. San Francisco, Reston: American Society of Civil Engineers, 2012: 918-927.
|
[11] |
ERDLY J L, VALENTINO E R, HOIGARD K, et al. Investigation of masonry failure of a granite and limestone clad historic church in eastern Pennsylvania[J]. Journal of ASTM International, 2007, 4(5): 100853. doi: 10.1520/JAI100853
|
[12] |
王金昌, 陈页开. ABAQUS在土木工程中的应用[M]. 杭州: 浙江大学出版社, 2006: 68-88.
|