Citation: | CHEN Xin, LUO Xia, ZHU Ying, MAO Yuansi. Delayed-Boarding Probability Distribution for Metro Stations Using Auto Fare Collection Data[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 418-424. doi: 10.3969/j.issn.0258-2724.20200270 |
To explore the characteristics of delayed boarding in metro stations, a probability distribution estimation method based on auto fare collection (AFC) data and operation timetable data is developed. Firstly, according to the relationship between passenger tap-in and tap-out time and train arrival and departure time, a probability distribution function of maximum access time and egress time is constructed, and an estimation method using the truncated sample is developed to estimate the access and egress time distribution. Secondly, an estimation method of the delayed-boarding probability distribution is constructed by analyzing the relationship among passenger tap-in and tap-out time, access and egress time and the number of delayed-boarding times. Finally, with some metro sections as a real case study, for different levels and types of stations, the access and egress time distribution and the delayed-boarding probability are estimated. The results of the case study show that the access and egress time distributions follow the estimated distributions at a 5% significant level, and the estimated delayed-boarding probability distribution is consistent with the practical results.
[1] |
张永生,姚恩建,刘莎莎,等. 城市轨道交通乘客半补偿路径选择建模与应用[J]. 铁道学报,2018,40(2): 1-7. doi: 10.3969/j.issn.1001-8360.2018.02.001
ZHANG Yongsheng, YAO Enjian, LIU Shasha, et al. Metro passengers’ semi-compensatory route choice modeling and application[J]. Journal of the China Railway Society, 2018, 40(2): 1-7. doi: 10.3969/j.issn.1001-8360.2018.02.001
|
[2] |
曾璐,刘军,秦勇,等. 基于 AFC 数据的突发事件下城市轨道交通乘客路径决策研究[J]. 铁道学报,2019,41(8): 9-18. doi: 10.3969/j.issn.1001-8360.2019.08.002
ZENG Lu, LIU Jun, QIN Yong, et al. Route choice behavior of passengers in urban rail transit under emergency based on AFC data[J]. Journal of the China Railway Society, 2019, 41(8): 9-18. doi: 10.3969/j.issn.1001-8360.2019.08.002
|
[3] |
CATS O, HARTL M. Modelling public transport on-board congestion:comparing schedule-based and agent-based assignment approaches and their implications[J]. Journal of Advanced Transportation, 2016, 50(6): 1209-1224. doi: 10.1002/atr.1398
|
[4] |
周玮腾,韩宝明. 考虑列车容量限制的地铁网络客流分配模型[J]. 华南理工大学学报 (自然科学版),2015,43(8): 126-134,143.
ZHOU Weiteng, HAN Baoming. Passenger flow assignment model of subway networks under train capacity constraint[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(8): 126-134,143.
|
[5] |
ZHAO J J, ZHANG F, TU L, et al. Estimation of passenger route choice pattern using smart card data for complex metro systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 790-801. doi: 10.1109/TITS.2016.2587864
|
[6] |
ZHU Y W, KOUTSOPOULOS H N, WILSON N H M. A probabilistic passenger-to-train assignment model based on automated data[J]. Transportation Research Part B:Methodological, 2017, 104: 522-542. doi: 10.1016/j.trb.2017.04.012
|
[7] |
ZHU W, WANG W, HUANG Z D. Estimating train choices of rail transit passengers with real timetable and automatic fare collection data[J]. Journal of Advanced Transportation, 2017, 2017: 5824051.1-5824051.12.
|
[8] |
PAUL E C. Estimating train passenger load from automated data systems: application to London underground[D]. New York: Massachusetts Institute of Technology, 2010.
|
[9] |
TIRACHINI A, SUN L J, ERATH A, et al. Valuation of sitting and standing in metro trains using revealed preferences[J]. Transport Policy, 2016, 47: 94-104. doi: 10.1016/j.tranpol.2015.12.004
|
[10] |
ZHU Y W, KOUTSOPOULOS H N, WILSON N H M. Inferring left behind passengers in congested metro systems from automated data[J]. Transportation Research Part C:Emerging Technologies, 2018, 94: 323-337. doi: 10.1016/j.trc.2017.10.002
|
[11] |
XIE X Y, LEURENT F. Comparison of passenger walking speed distribution models in mass transit stations[J]. Transportation Research Procedia, 2017, 27: 696-703. doi: 10.1016/j.trpro.2017.12.081
|
[12] |
LEURENT F, XIE X Y. Exploiting smartcard data to estimate distributions of passengers’ walking speed and distances along an urban rail transit line[J]. Transportation Research Procedia, 2017, 22: 45-54. doi: 10.1016/j.trpro.2017.03.006
|
[13] |
FULLER W A. Sampling statistics[M]. Hoboken: John Wiley & Sons, 2011.
|
[14] |
HÖRCHER D, GRAHAM D J, ANDERSON R J. Crowding cost estimation with large scale smart card and vehicle location data[J]. Transportation Research Part B:Methodological, 2017, 95: 105-125. doi: 10.1016/j.trb.2016.10.015
|
[15] |
WOLYNETZ M. Algorithm AS 139:Maximum likelihood estimation in a linear model from confined and censored normal data[J]. Applied Statistics, 1979, 28(2): 195-206. doi: 10.2307/2346749
|
[16] |
YIN H D, WU J J, LIU Z Y et al. Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation[J]. Applied Mathematical Modelling, 2019, 72: 337-355. doi: 10.1016/j.apm.2019.02.003
|
[17] |
INGVARDSON J B, NIELSEN O A, RAVEAU S, et al. Passenger arrival and waiting time distributions dependent on train service frequency and station characteristics:a smart card data analysis[J]. Transportation Research Part C:Emerging Technologies, 2018, 90: 292-306. doi: 10.1016/j.trc.2018.03.006
|
[1] | LIU Wei, DENG Haotian, XU Qian, RAO Xiaoming. Optimal Design of Power Supply Scheme for Sharing Resources in Urban Rail Interchange Stations[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230146 |
[2] | MENG Chuncheng, QU Daoyuan, DUAN Xiaochen. Nonlinear Prediction and Inversion of Civil Engineering Cost of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 137-146. doi: 10.3969/j.issn.0258-2724.20230209 |
[3] | ZHANG Zheng, LOU Huibin, SUN Li, ZHU Bin, REN Xichong. Theoretical and Experimental Study on Design Scheme of Vibration Damping Prefabricated Track[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 630-637. doi: 10.3969/j.issn.0258-2724.20210517 |
[4] | JIN Shoujie, LI Kunpeng, ZHAN Dong, WAN Yongsheng, ZHONG Wei, FENG Chao. Safety Assessment Method of Collector Shoe-Rail Relationship in Urban Rail Transits[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1029-1034. doi: 10.3969/j.issn.0258-2724.20200075 |
[5] | SHI Haiou, YUAN Quan, ZHANG Yunlin, ZENG Wenqu, ZHENG Qing, DING Guofu. Multi-Discipline Forward Collaborative Design Technology Based on BIM Interaction and Data-Driven[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 176-181. doi: 10.3969/j.issn.0258-2724.20200035 |
[6] | LIU Jie, CHEN Jinqu, PENG Qiyuan, YIN Yong. Reliability and Service Quality Evaluation for Urban Rail Transit Network[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 395-402, 450. doi: 10.3969/j.issn.0258-2724.20190938 |
[7] | LIU Fengbo, ZHOU Tingliang, WANG Xiaomin. Calculation and Evaluation Method of Passenger Flow Distribution under Urban Rail Transit Failure[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 921-927, 966. doi: 10.3969/j.issn.0258-2724.20200602 |
[8] | NONG Xingzhong, SHI Haiou, YUAN Quan, ZENG Wenqu, ZHENG Qing, DING Guofu. Review on BIM Technology Used in Urban Rail Transit Projects[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 451-460. doi: 10.3969/j.issn.0258-2724.20200018 |
[9] | GUO Huiyong, WANG Zhihua, LI Zhengliang. Structural Nonlinear Damage Identification Based on Autoregressive Conditional Heteroskedasticity Conversion Index[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 459-466, 517. doi: 10.3969/j.issn.0258-2724.20180316 |
[10] | YIN Yong, CHEN Jinqu, ZHU Man, LIU Jie. Repair Strategies for Failure of Urban Rail Transit Stations[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 865-872. doi: 10.3969/j.issn.0258-2724.20191133 |
[11] | LIN Sheng, LIN Xiaohong, FENG Ding. Reliability Evaluation of Relay Protection for Traction Substation of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1102-1109. doi: 10.3969/j.issn.0258-2724.2018.06.002 |
[12] | ZHOU Ning, ZOU Huan, ZOU Dong, TAN Mengying, ZHANG Weihua. Investigation on the Applicability of Pantograph and Catenary Model Urban Railway System[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 408-415,423. doi: 10.3969/j.issn.0258-2724.2017.02.026 |
[13] | HU Yingyue, CHEN Feng, CHEN Peiwen, WANG Zijia. Critical Station Identification Based on Passenger Propagation in Urban Mass Transit Network[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1193-1200,1215. doi: 10.3969/j.issn.0258-2724.2017.06.021 |
[14] | HUANG Minghua, QU Hezhou, LIU Xiaobo, TANG Youhua. Transfer-Oriented Dispatching Optimization of Rail Transit Network[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 326-333. doi: 10.3969/j.issn.0258-2724.2017.02.016 |
[15] | LU Gongyuan, MA Si, WANG Kun, DENG Nian. Integer Programming Model of Passenger Flow Assignment for Congested Urban Rail lines[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 319-325. doi: 10.3969/j.issn.0258-2724.2017.02.015 |
[16] | LI Qunzhan. Industrial Frequency Single-Phase AC Traction Power Supply System and Its Key Technologies for Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 199-207. doi: 10.3969/j.issn.0258-2724.2015.02.001 |
[17] | SHANG Bin, ZHANG Xiaoning. Passenger-Flow Spatial Distribution Model of Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 539-545. doi: 10.3969/j.issn.0258-2724.2013.03.023 |
[18] | CHENG Jie, PENG Qiyuan, ZHAO Jun. Train Routing Optimization Model for Urban Rail Transit[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1116-1121. doi: 10.3969/j.issn.0258-2724.2013.06.023 |
[19] | DU Shengpin, XIONG Ling, DING Weidong. Comprehensive Evaluation of Urban Rail Transit Network Planning Based on Green Transportation Principle[J]. Journal of Southwest Jiaotong University, 2006, 19(3): 284-289. |
[20] | LIU Shi-chao. ForecastM odel ofRoad Section Traffic Flow Based onM aximum Likelihood Estimation[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 245-248. |
1. | 路昊. 基于AFC数据的城轨旅客乘车方案估计方法. 综合运输. 2024(12): 113-118 . ![]() | |
2. | 刘奕苁. 基于AFC数据的地铁乘客候车时间估计方法. 综合运输. 2022(10): 96-102 . ![]() |