Citation: | HU Zheng, TIAN Maozhong, GUO Weixiang, LIU Jinyang. Geological Genesis of Tunnel High Ground Temperature[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1077-1085, 1112. doi: 10.3969/j.issn.0258-2724.20200180 |
A highway tunnel under construction in Honghe Prefecture, Yunnan Province was taken as the research object to study the geological genesis of high ground temperature. The tunnel has both high water temperature and high rock temperature, with the maximum water temperature of 63.4 ℃ and the maximum rock temperature of 88.8 ℃. The regional thermal control, water source, heat source, and heat conduction channel are analyzed from the aspects of regional geological structure, seismic characteristics, hydrochemical characteristics, and geothermal reservoir characteristics. The hot water source, evolution process, and origin of heat source are studied by means of hydrogen oxygen isotope analysis, strontium isotope analysis, trace element analysis, and radioactive element analysis. Based on the geological, hydrogeological and excavation conditions of the tunnel, the geological genesis of the high water temperature section and the high rock temperature section of the tunnel is dissected and discussed. The results show that the genetic process of high water temperature in limestone sections is different from that in granite sections. The genetic process of high water temperature in tunnel is “heat source (deep thermal anomaly)–main heat transfer channel (deep cycle)–secondary heat transfer channel–shallow water mixing and water rock interaction”, which is accompanied by cold and hot water mixing, ion exchange, etc.; while the genetic process of high rock temperature in tunnel is “heat source (deep abnormal body, radioactive element decay heat generation)–main heat transfer channel (deep cycle)–secondary heat transfer channel–hot gas being transmitted to the tunnel rock mass along the crack”, and the process is accompanied by the enrichment of S element, which is favorable to the formation of toxic and harmful air bag of H2S or SO2.
[1] |
郭长宝,张永双,蒋良文,等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质,2017,31(5): 877-889. doi: 10.3969/j.issn.1000-8527.2017.05.001
GUO Changbao, ZHANG Yongshuang, JIANG Liangwen, et al. Discussion on the environmental and engineering geological problems along the Sichuan—Tibet railway and its adjacent area[J]. Geoscience, 2017, 31(5): 877-889. doi: 10.3969/j.issn.1000-8527.2017.05.001
|
[2] |
汪缉安,徐青,张文仁. 云南大地热流及地热地质问题[J]. 地震地质,1990,12(4): 367-377.
WANG Ji’an, XU Qing, ZHANG Wenren. Heat flow data and some geologic-geothermal problems in Yunnan province[J]. Seismology and Geology, 1990, 12(4): 367-377.
|
[3] |
周真恒,向才英,覃玉玺,等. 云南深部热流研究[J]. 西北地震学报,1997,19(4): 51-57.
ZHOU Zhenheng, XIANG Caiying, QIN Yuxi, et al. Study on deep heat flow in Yunnan,China[J]. Northwestern Seismological Journal, 1997, 19(4): 51-57.
|
[4] |
黄润秋,王贤能,唐胜传,等. 深埋长隧道工程开挖的主要地质灾害问题研究[J]. 地质灾害与环境保护,1997,8(1): 50-68.
HUANG Runqiu, WANG Xianneng, TANG Shengchuan, et al. Research on the main geological hazards of deep lying long tunnel[J]. Journal of Geological Hazards and Environment Preservation, 1997, 8(1): 50-68.
|
[5] |
姚志勇. 中尼铁路高地温分布特征及地质选线探析[J]. 铁道标准设计,2017,61(8): 21-26.
YAO Zhiyong. Analysis of the characteristics of high ground temperature distribution and geological alignment of China—Nepal railway[J]. Railway Standard Design, 2017, 61(8): 21-26.
|
[6] |
李国良,程磊,王飞. 高地温隧道修建关键技术研究[J]. 铁道标准设计,2016,60(6): 55-59.
LI Guoliang, CHENG Lei, WANG Fei. Study on key technology for construction of high ground temperature tunnel[J]. Railway Standard Design, 2016, 60(6): 55-59.
|
[7] |
杨长顺. 高地温隧道综合施工技术研究[J]. 铁道建筑技术,2010(10): 39-46. doi: 10.3969/j.issn.1009-4539.2010.10.010
YANG Changshun. On comprehensive construction technology of high ground temperature tunnel[J]. Railway Construction Technology, 2010(10): 39-46. doi: 10.3969/j.issn.1009-4539.2010.10.010
|
[8] |
刘金松. 川藏铁路高地温隧道施工关键技术研究[J]. 施工技术,2018,47(1): 100-102.
LIU Jinsong. Key construction technologies research on high geothermal tunnel on Sichuan—Tibet railway[J]. Construction Technology, 2018, 47(1): 100-102.
|
[9] |
袁伟,冉光静,张恒. 海螺沟温泉地质成因分析[J]. 中国矿业,2015,24(4): 83-87. doi: 10.3969/j.issn.1004-4051.2015.04.020
YUAN Wei, RAN Guangjing, ZHANG Heng. Genetic analysis of Hailuogou hotspring[J]. China Mining Magazine, 2015, 24(4): 83-87. doi: 10.3969/j.issn.1004-4051.2015.04.020
|
[10] |
周春景,吴中海. 滇西大理至瑞丽铁路沿线地温场特征及其工程地质意义[J]. 地质通报,2012,31(增刊1): 326-336. doi: 10.3969/j.issn.1671-2552.2012.02.016
ZHOU Chunjing, WU Zhonghai. The characteristics of geothermal field along the Dali-Ruili railway in western Yunnan province and their implications for geo-engineering[J]. Geological Bulletin of China, 2012, 31(S1): 326-336. doi: 10.3969/j.issn.1671-2552.2012.02.016
|
[11] |
胡政, 阮压福. 红河州建水(个旧)至元阳高速公路项目尼格隧道、斐古隧道高地温成因分析专项报告[R]. 贵阳: 中国电建集团贵阳勘测设计研究院有限公司, 2020.
|
[12] |
丁国瑜. 中国岩石圈动力学概论[M]. 北京: 地震出版社, 1991.
|
[13] |
国家地震局书名编委会. 中国岩石圈动力学地图集[M]. 北京: 中国地图出版社, 1989.
|
[14] |
张贵玲,角媛梅,何礼平,等. 中国西南地区降水氢氧同位素研究进展与展望[J]. 冰川冻土,2015,37(4): 1094-1103.
ZHANG Guiling, JIAO Yuanmei, HE Liping, et al. Hydrogen and oxygen isotopes in precipitation in Southwest China:progress and prospects[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 1094-1103.
|
[15] |
KLAUS J S, HANSEN B T, BUAPENG S. 87Sr/86Sr ratio:a natural tracer to monitor groundwater flow paths during artificial recharge in the Bangkok area,Thailand[J]. Hydrogeology Journal, 2007, 15(4): 745-758. doi: 10.1007/s10040-007-0175-z
|
[16] |
PU J B, YUAN D X, ZHANG C, et al. Identifying the sources of solutes in karst groundwater in Chongqing,China:a combined sulfate and strontium isotope approach[J]. Acta Geologica Sinica (English Edition), 2012, 86(4): 980-992. doi: 10.1111/j.1755-6724.2012.00722.x
|
[17] |
余恒昌. 矿山地热与热害治理[M]. 北京: 煤炭工业出版社, 1991.
|
[18] |
徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009.
|
[19] |
田廷山, 李明朗, 白冶. 中国地热资源及开发利用[M]. 北京: 中国环境科学出版社, 2005.
|
[20] |
RYBACH L. Radioactive heat production in rocks and its relation to other petrophysical parameters[J]. Pure and Applied Geophysics, 1976, 114(2): 309-317. doi: 10.1007/BF00878955
|