• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
HE Songyang, YAN Xiuqing, LI Zhengliang, LIU Xiangyun, LI Zhong, GONG Tao. Theoretical Study on Uplift Calculation of Embedded Twelve Ground Screws of Transmission Angle Steel Tower[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1406-1414. doi: 10.3969/j.issn.0258-2724.20230011
Citation: HU Zheng, TIAN Maozhong, GUO Weixiang, LIU Jinyang. Geological Genesis of Tunnel High Ground Temperature[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1077-1085, 1112. doi: 10.3969/j.issn.0258-2724.20200180

Geological Genesis of Tunnel High Ground Temperature

doi: 10.3969/j.issn.0258-2724.20200180
  • Received Date: 10 Apr 2020
  • Rev Recd Date: 29 Jun 2020
  • Available Online: 09 Nov 2021
  • Publish Date: 07 Jul 2020
  • A highway tunnel under construction in Honghe Prefecture, Yunnan Province was taken as the research object to study the geological genesis of high ground temperature. The tunnel has both high water temperature and high rock temperature, with the maximum water temperature of 63.4 ℃ and the maximum rock temperature of 88.8 ℃. The regional thermal control, water source, heat source, and heat conduction channel are analyzed from the aspects of regional geological structure, seismic characteristics, hydrochemical characteristics, and geothermal reservoir characteristics. The hot water source, evolution process, and origin of heat source are studied by means of hydrogen oxygen isotope analysis, strontium isotope analysis, trace element analysis, and radioactive element analysis. Based on the geological, hydrogeological and excavation conditions of the tunnel, the geological genesis of the high water temperature section and the high rock temperature section of the tunnel is dissected and discussed. The results show that the genetic process of high water temperature in limestone sections is different from that in granite sections. The genetic process of high water temperature in tunnel is “heat source (deep thermal anomaly)–main heat transfer channel (deep cycle)–secondary heat transfer channel–shallow water mixing and water rock interaction”, which is accompanied by cold and hot water mixing, ion exchange, etc.; while the genetic process of high rock temperature in tunnel is “heat source (deep abnormal body, radioactive element decay heat generation)–main heat transfer channel (deep cycle)–secondary heat transfer channel–hot gas being transmitted to the tunnel rock mass along the crack”, and the process is accompanied by the enrichment of S element, which is favorable to the formation of toxic and harmful air bag of H2S or SO2.

     

  • [1]
    郭长宝,张永双,蒋良文,等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质,2017,31(5): 877-889. doi: 10.3969/j.issn.1000-8527.2017.05.001

    GUO Changbao, ZHANG Yongshuang, JIANG Liangwen, et al. Discussion on the environmental and engineering geological problems along the Sichuan—Tibet railway and its adjacent area[J]. Geoscience, 2017, 31(5): 877-889. doi: 10.3969/j.issn.1000-8527.2017.05.001
    [2]
    汪缉安,徐青,张文仁. 云南大地热流及地热地质问题[J]. 地震地质,1990,12(4): 367-377.

    WANG Ji’an, XU Qing, ZHANG Wenren. Heat flow data and some geologic-geothermal problems in Yunnan province[J]. Seismology and Geology, 1990, 12(4): 367-377.
    [3]
    周真恒,向才英,覃玉玺,等. 云南深部热流研究[J]. 西北地震学报,1997,19(4): 51-57.

    ZHOU Zhenheng, XIANG Caiying, QIN Yuxi, et al. Study on deep heat flow in Yunnan,China[J]. Northwestern Seismological Journal, 1997, 19(4): 51-57.
    [4]
    黄润秋,王贤能,唐胜传,等. 深埋长隧道工程开挖的主要地质灾害问题研究[J]. 地质灾害与环境保护,1997,8(1): 50-68.

    HUANG Runqiu, WANG Xianneng, TANG Shengchuan, et al. Research on the main geological hazards of deep lying long tunnel[J]. Journal of Geological Hazards and Environment Preservation, 1997, 8(1): 50-68.
    [5]
    姚志勇. 中尼铁路高地温分布特征及地质选线探析[J]. 铁道标准设计,2017,61(8): 21-26.

    YAO Zhiyong. Analysis of the characteristics of high ground temperature distribution and geological alignment of China—Nepal railway[J]. Railway Standard Design, 2017, 61(8): 21-26.
    [6]
    李国良,程磊,王飞. 高地温隧道修建关键技术研究[J]. 铁道标准设计,2016,60(6): 55-59.

    LI Guoliang, CHENG Lei, WANG Fei. Study on key technology for construction of high ground temperature tunnel[J]. Railway Standard Design, 2016, 60(6): 55-59.
    [7]
    杨长顺. 高地温隧道综合施工技术研究[J]. 铁道建筑技术,2010(10): 39-46. doi: 10.3969/j.issn.1009-4539.2010.10.010

    YANG Changshun. On comprehensive construction technology of high ground temperature tunnel[J]. Railway Construction Technology, 2010(10): 39-46. doi: 10.3969/j.issn.1009-4539.2010.10.010
    [8]
    刘金松. 川藏铁路高地温隧道施工关键技术研究[J]. 施工技术,2018,47(1): 100-102.

    LIU Jinsong. Key construction technologies research on high geothermal tunnel on Sichuan—Tibet railway[J]. Construction Technology, 2018, 47(1): 100-102.
    [9]
    袁伟,冉光静,张恒. 海螺沟温泉地质成因分析[J]. 中国矿业,2015,24(4): 83-87. doi: 10.3969/j.issn.1004-4051.2015.04.020

    YUAN Wei, RAN Guangjing, ZHANG Heng. Genetic analysis of Hailuogou hotspring[J]. China Mining Magazine, 2015, 24(4): 83-87. doi: 10.3969/j.issn.1004-4051.2015.04.020
    [10]
    周春景,吴中海. 滇西大理至瑞丽铁路沿线地温场特征及其工程地质意义[J]. 地质通报,2012,31(增刊1): 326-336. doi: 10.3969/j.issn.1671-2552.2012.02.016

    ZHOU Chunjing, WU Zhonghai. The characteristics of geothermal field along the Dali-Ruili railway in western Yunnan province and their implications for geo-engineering[J]. Geological Bulletin of China, 2012, 31(S1): 326-336. doi: 10.3969/j.issn.1671-2552.2012.02.016
    [11]
    胡政, 阮压福. 红河州建水(个旧)至元阳高速公路项目尼格隧道、斐古隧道高地温成因分析专项报告[R]. 贵阳: 中国电建集团贵阳勘测设计研究院有限公司, 2020.
    [12]
    丁国瑜. 中国岩石圈动力学概论[M]. 北京: 地震出版社, 1991.
    [13]
    国家地震局书名编委会. 中国岩石圈动力学地图集[M]. 北京: 中国地图出版社, 1989.
    [14]
    张贵玲,角媛梅,何礼平,等. 中国西南地区降水氢氧同位素研究进展与展望[J]. 冰川冻土,2015,37(4): 1094-1103.

    ZHANG Guiling, JIAO Yuanmei, HE Liping, et al. Hydrogen and oxygen isotopes in precipitation in Southwest China:progress and prospects[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 1094-1103.
    [15]
    KLAUS J S, HANSEN B T, BUAPENG S. 87Sr/86Sr ratio:a natural tracer to monitor groundwater flow paths during artificial recharge in the Bangkok area,Thailand[J]. Hydrogeology Journal, 2007, 15(4): 745-758. doi: 10.1007/s10040-007-0175-z
    [16]
    PU J B, YUAN D X, ZHANG C, et al. Identifying the sources of solutes in karst groundwater in Chongqing,China:a combined sulfate and strontium isotope approach[J]. Acta Geologica Sinica (English Edition), 2012, 86(4): 980-992. doi: 10.1111/j.1755-6724.2012.00722.x
    [17]
    余恒昌. 矿山地热与热害治理[M]. 北京: 煤炭工业出版社, 1991.
    [18]
    徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009.
    [19]
    田廷山, 李明朗, 白冶. 中国地热资源及开发利用[M]. 北京: 中国环境科学出版社, 2005.
    [20]
    RYBACH L. Radioactive heat production in rocks and its relation to other petrophysical parameters[J]. Pure and Applied Geophysics, 1976, 114(2): 309-317. doi: 10.1007/BF00878955
  • Relative Articles

    [1]YANG Meng, WANG Yunfei, ZHAO Jiabin, ZHOU Jing, WANG Yongjing, LI Yongle. Vortex-Induced Vibration Response of Bridges Considering Both Spanwise Variation of Vibration Amplitude and Correlation of Aerodynamic Forces[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 45-52. doi: 10.3969/j.issn.0258-2724.20220714
    [2]HUANG Lin, DONG Jiahui, LIAO Haili, PU Shiyu, WANG Qi. Vortex-Induced Vibration (VIV) Aerodynamic Measures of Girder with Side Beam Based on Computation Fluid Dynamics (CFD) and Wind Tunnel Test[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 343-352. doi: 10.3969/j.issn.0258-2724.20220208
    [3]LI Yongle, PAN Junzhi, TI Zilong, RAO Gang. Inversion Method of Vortex-Induced Vibration Amplitude for Long-Span Bridges with Partially Installed Noise Barrier[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 183-190. doi: 10.3969/j.issn.0258-2724.20210172
    [4]LEI Yongfu, LI Ming, SUN Yanguo, LI Mingshui. Experimental Study on Flutter Performance of Long-Span Suspension Bridge with Double-Deck Truss Girder[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.20200599
    [5]LI Chunguang, MAO Yu, YAN Hubin, LIANG Aihong, HAN Yan. Experimental Study on Vortex-Induced Vibration Performance and Countermeasures for Side Girder Beam with Conveyer[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 886-893. doi: 10.3969/j.issn.0258-2724.20210224
    [6]JI Wei, SHAO Tianyan. Finite Element Model Updating of Box Girder Bridges with Corrugated Steel Webs[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 1-11. doi: 10.3969/j.issn.0258-2724.20191198
    [7]LIN Siyuan, LIAO Haili, WANG Qi, XIONG Long. Effects of Oscillation Amplitude on Nonlinear Motion-Induced Force for 5 ∶ 1 Rectangular Cylinder[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 249-259. doi: 10.3969/j.issn.0258-2724.20170573
    [8]LI Tian, QIN Deng, AN Chao, ZHANG Jiye. Effect of Computational Grid on Uncertainty in Train Aerodynamics[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 816-822. doi: 10.3969/j.issn.0258-2724.20180503
    [9]MA Cunming, WANG Junxin, LUO Nan, LI Hongjiu, LIAO Haili. Vortex-Induced Vibration Performance and Control Measures of Wide Twin-Box Girder[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 724-730. doi: 10.3969/j.issn.0258-2724.20161029
    [10]LI Ming, SUN Yanguo, LI Mingshui, WU Bo. Vortex-Induced Vibration Performance of Wide Streamlined Box Girder and Aerodynamic Countermeasure Research[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712-719. doi: 10.3969/j.issn.0258-2724.2018.04.007
    [11]XIONG Long, LIAO Haili, WANG Qi, MA Cunming. Analytic Identification of Bridge Nonlinear Motion-Induced Aerodynamic Parameter[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 824-831. doi: 10.3969/j.issn.0258-2724.2016.05.002
    [12]LIU Jun, LIAO Haili, WAN Jiawei, MA Cunming. Effect of Guide Vane beside Maintenance Rail on Vortex-Induced Vibration of Streamlined Box Girder[J]. Journal of Southwest Jiaotong University, 2015, 28(5): 789-795. doi: 10.3969/j.issn.0258-2724.2015.05.004
    [13]LUO Gang, ZHOU Xiaojun. Vortex-Induced Fatigue Damage Analysis of Submerged Floating Tunnel Cable[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 642-648. doi: 10.3969/j.issn.0258-2724.2014.04.013
    [14]ZHANG Zhengwei, QUAN Yong, GU Ming, XIONG Yong. Aerodynamic Characteristics of Tapered Tall Buildings with Square Section[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 772-778. doi: 10.3969/j.issn.0258-2724.2014.05.005
    [15]QIN Hao, LIAO Haili, LI Mingshui. Vortex-Induced Vibration of Continuous Steel Box-Girder Bridge with Variable Cross-Sections at Typical Erection Stages[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 760-765,786. doi: 10.3969/j.issn.0258-2724.2014.05.003
    [16]WANG Qi, LIAO Haili, LI Mingshui, MA Cunming. Empirical Mathematical Model for Nonlinear Motion-Induced Aerodynamic Force of Bridge Girder[J]. Journal of Southwest Jiaotong University, 2013, 26(2): 271-277. doi: 10.3969/j.issn.0258-2724.2013.02.013
    [17]SUN Yanguo, LIAO Haili, LI Mingshui. Mitigation Measures of Vortex-Induced Vibration of Suspension Bridge Based on Section Model Test[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 218-223. doi: 10.3969/j.issn.0258-2724.2012.02.008
    [18]XIAN Rong, LIAO Haili, LI Mingshui. Calculation of Spanwise Vortex-Induced Vibration Responses of Long-Span Bridge Girder[J]. Journal of Southwest Jiaotong University, 2008, 21(6): 740-746.
    [19]LUGui-chen, ZHANGHong-fen, YANG Yong-xi, GE Yao-jun. Cross Section Aerodynam ic Optim ization of SteelBox G irder in X ihoumen Suspension Bridge Prelim inary Design[J]. Journal of Southwest Jiaotong University, 2005, 18(4): 473-477.
    [20]LIU Shan-hong, HE Guang-han. Test Study on Segmental Model of a PPC Box Girder[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 491-494.
  • Cited by

    Periodical cited type(3)

    1. 张艺,李欢,魏高翔,何旭辉,谢祖育. 高铁大跨扁平箱梁桥涡振性能及抑振措施研究. 中南大学学报(自然科学版). 2025(02): 560-574 .
    2. 段青松,马存明. 检修车轨道对窄幅流线型箱梁涡振性能影响研究. 桥梁建设. 2024(01): 88-94 .
    3. 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2024. 中国公路学报. 2024(12): 1-160 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.1 %FULLTEXT: 35.1 %META: 61.8 %META: 61.8 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.2 %其他: 16.2 %其他: 0.4 %其他: 0.4 %China: 0.5 %China: 0.5 %[]: 0.2 %[]: 0.2 %上海: 0.5 %上海: 0.5 %东莞: 1.3 %东莞: 1.3 %临汾: 0.2 %临汾: 0.2 %乐山: 0.2 %乐山: 0.2 %保定: 0.3 %保定: 0.3 %信阳: 0.1 %信阳: 0.1 %兴安盟: 0.1 %兴安盟: 0.1 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %北京: 7.0 %北京: 7.0 %十堰: 0.2 %十堰: 0.2 %南京: 0.5 %南京: 0.5 %南充: 0.1 %南充: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.3 %南昌: 0.3 %南通: 0.2 %南通: 0.2 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %吉安: 0.1 %吉安: 0.1 %吕梁: 0.1 %吕梁: 0.1 %周口: 0.2 %周口: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣彼得堡: 0.7 %圣彼得堡: 0.7 %大兴安岭地区: 0.1 %大兴安岭地区: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.2 %太原: 0.2 %宁波: 0.2 %宁波: 0.2 %安康: 0.2 %安康: 0.2 %宜宾: 0.2 %宜宾: 0.2 %宜昌: 0.3 %宜昌: 0.3 %宣城: 0.5 %宣城: 0.5 %巴中: 0.1 %巴中: 0.1 %常德: 0.1 %常德: 0.1 %广州: 0.3 %广州: 0.3 %张家口: 1.9 %张家口: 1.9 %徐州: 0.2 %徐州: 0.2 %德阳: 0.1 %德阳: 0.1 %成都: 3.2 %成都: 3.2 %扬州: 0.1 %扬州: 0.1 %拉萨: 0.1 %拉萨: 0.1 %揭阳: 0.1 %揭阳: 0.1 %新竹: 0.1 %新竹: 0.1 %无锡: 0.1 %无锡: 0.1 %日喀则: 0.4 %日喀则: 0.4 %昆明: 0.7 %昆明: 0.7 %昌都: 0.1 %昌都: 0.1 %昭通: 0.4 %昭通: 0.4 %普洱: 0.2 %普洱: 0.2 %曲靖: 0.1 %曲靖: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.3 %杭州: 0.3 %林芝: 0.3 %林芝: 0.3 %武汉: 1.6 %武汉: 1.6 %池州: 0.5 %池州: 0.5 %沈阳: 0.8 %沈阳: 0.8 %沧州: 0.1 %沧州: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.3 %济南: 0.3 %济宁: 0.1 %济宁: 0.1 %海口: 0.1 %海口: 0.1 %深圳: 0.4 %深圳: 0.4 %温州: 0.2 %温州: 0.2 %漯河: 0.9 %漯河: 0.9 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %甘孜: 0.7 %甘孜: 0.7 %眉山: 0.1 %眉山: 0.1 %石家庄: 1.7 %石家庄: 1.7 %石河子: 0.1 %石河子: 0.1 %福州: 0.4 %福州: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %红河: 0.3 %红河: 0.3 %绍兴: 0.1 %绍兴: 0.1 %聊城: 0.2 %聊城: 0.2 %芒廷维尤: 16.8 %芒廷维尤: 16.8 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %襄阳: 0.2 %襄阳: 0.2 %西宁: 22.9 %西宁: 22.9 %西安: 1.2 %西安: 1.2 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.4 %贵阳: 0.4 %达州: 0.5 %达州: 0.5 %运城: 0.5 %运城: 0.5 %邯郸: 0.5 %邯郸: 0.5 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.9 %郑州: 0.9 %重庆: 0.9 %重庆: 0.9 %金华: 0.1 %金华: 0.1 %钦州: 0.1 %钦州: 0.1 %银川: 0.1 %银川: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 2.5 %长沙: 2.5 %阜阳: 0.2 %阜阳: 0.2 %阿坝: 0.2 %阿坝: 0.2 %雅安: 0.1 %雅安: 0.1 %青岛: 0.6 %青岛: 0.6 %黄冈: 0.2 %黄冈: 0.2 %齐齐哈尔: 0.3 %齐齐哈尔: 0.3 %其他其他China[]上海东莞临汾乐山保定信阳兴安盟内江凉山北京十堰南京南充南宁南昌南通台州合肥吉安吕梁周口哥伦布嘉兴圣彼得堡大兴安岭地区天津太原宁波安康宜宾宜昌宣城巴中常德广州张家口徐州德阳成都扬州拉萨揭阳新竹无锡日喀则昆明昌都昭通普洱曲靖朝阳杭州林芝武汉池州沈阳沧州洛阳济南济宁海口深圳温州漯河烟台玉林甘孜眉山石家庄石河子福州秦皇岛红河绍兴聊城芒廷维尤芝加哥苏州襄阳西宁西安诺沃克贵阳达州运城邯郸邵阳郑州重庆金华钦州银川镇江长春长沙阜阳阿坝雅安青岛黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(592) PDF downloads(74) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return