• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
NIU Jiayong, ZHOU Yongyi, ZHANG Jianjing, DUAN Da, CHEN Kepeng. Tensile Strength of Root and Soil Composite Based on New Tensile Apparatus[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 191-199. doi: 10.3969/j.issn.0258-2724.20200077
Citation: NIU Jiayong, ZHOU Yongyi, ZHANG Jianjing, DUAN Da, CHEN Kepeng. Tensile Strength of Root and Soil Composite Based on New Tensile Apparatus[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 191-199. doi: 10.3969/j.issn.0258-2724.20200077

Tensile Strength of Root and Soil Composite Based on New Tensile Apparatus

doi: 10.3969/j.issn.0258-2724.20200077
  • Received Date: 15 Mar 2020
  • Rev Recd Date: 03 Sep 2020
  • Available Online: 15 Sep 2020
  • Publish Date: 15 Sep 2020
  • In order to study the mechanism of plant roots in preventing slope soil cracking, a self-developed uniaxial tensile test device was used to quantitatively study the strengthening effect of roots on the tensile strength of soil and analyze the tensile failure mechanism of root-soil composite. The test device consists of a loading module, a digital control module, a data acquisition module, and a sample making mold, which can accurately obtain the entire process displacement-tensile stress relationship curve and the tensile strength of test material. A series of direct tensile tests were carried out on the root-soil complex of the shrub plant Lespedeza bicolor under different root contents by the developed tensile device. The results show that the displacement-tensile stress curve of pure soil is unimodal, while the curve of root-soil complex is bimodal. The tensile strength of root-soil composite increases nonlinearly with the increase of root content, which is 28.01%−142.15% higher than that of plain soil. The tensile strength of root-soil complex can be estimated by the calculation model proposed in this paper. When the root content is 1−3, the average error is 12.12%. The tensile failure process of the root-soil complex can be divided into four phases: stress increase phase, soil failure phase, secondary increase stage, and root slip phase. The root system mainly contributes to the first and third stages.

     

  • loading
  • [1]
    吴宏伟. 大气–植被–土体相互作用:理论与机理[J]. 岩土工程学报,2017,39(1): 1-47. doi: 10.11779/CJGE201701001

    WU Hongwei. Atmosphere-plant-soil interactions:theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47. doi: 10.11779/CJGE201701001
    [2]
    周德培, 张俊云. 植被护坡工程技术[M]. 北京: 人民交通出版社, 2003: 62-75.
    [3]
    赵玉娇,胡夏嵩,李华坦,等. 寒旱环境灌木根系增强边坡土体抗剪强度特征[J]. 农业工程学报,2016,32(11): 174-180. doi: 10.11975/j.issn.1002-6819.2016.11.025

    ZHAO Yujiao, HU Xiasong, LI Huatan, et al. Characteristics of slope soil shear strength reinforced by shrub roots in cold and arid environments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 174-180. doi: 10.11975/j.issn.1002-6819.2016.11.025
    [4]
    栗岳洲,付江涛,余冬梅,等. 寒旱环境盐生植物根系固土护坡力学效应及其最优含根量探讨[J]. 岩石力学与工程学报,2015,34(7): 1370-1383.

    LI Yuezhou, FU Jiangtao, YU Dongmei, et al. Mechanical effects of halophytes roots and optimal root content for slope protection in cold and arid environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1370-1383.
    [5]
    卢海静,胡夏嵩,付江涛,等. 寒旱环境植物根系增强边坡土体抗剪强度的原位剪切试验研究[J]. 岩石力学与工程学报,2016,35(8): 1712-1721.

    LU Haijing, HU Xiasong, FU Jiangtao, et al. In-situ shearing test on the shear strengh of soil slope reinforced by plant roots in cold and arid environments[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1712-1721.
    [6]
    AJEDEGBA J O, CHOI J W, JONES K D. Analytical modeling of coastal dune erosion at South Padre Island:a consideration of the effects of vegetation roots and shear strength[J]. Ecological Engineering, 2019, 127: 187-194. doi: 10.1016/j.ecoleng.2018.11.020
    [7]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
    [8]
    汤连生,桑海涛,罗珍贵,等. 土体抗拉张力学特性研究进展[J]. 地球科学进展,2015,30(3): 297-309. doi: 10.11867/j.issn.1001-8166.2015.03.0297

    TANG Liansheng, SANG Haitao, LUO Zhengui, et al. Advances in research on the mechanical behavior of the tensile strength of soils[J]. Advances in Earth Science, 2015, 30(3): 297-309. doi: 10.11867/j.issn.1001-8166.2015.03.0297
    [9]
    MICHALOWSKI R L. Failure potential of infinite slopes in bonded soils with tensile strength cut-off[J]. Canadian Geotechnical Journal, 2018, 55: 477-485. doi: 10.1139/cgj-2017-0041
    [10]
    陈正汉,郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学,2019,40(1): 1-54.

    CHEN Zhenghan, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1-54.
    [11]
    郭楠,陈正汉,杨校辉,等. 各向同性土与横观各向同性土的力学特性和持水特性[J]. 西南交通大学学报,2019,54(6): 1235-1243.

    GUO Nan, CHEN Zhenghan, YANG Xiaohui, et al. Mechanical properties and water holding characteristics of initially isotropic soils and transversely isotropic soils[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1235-1243.
    [12]
    YIN P H, VANAPALLI S K. Model for predicting tensile strength of unsaturated cohesionless soils[J]. Canadian Geotechnical Journal, 2018, 55(9): 1313-1333. doi: 10.1139/cgj-2017-0376
    [13]
    李荣建,刘军定,郑文,等. 基于结构性黄土抗拉和抗剪特性的双线性强度及其应用[J]. 岩土工程学报,2013,35(增刊2): 247-252.

    LI Rongjian, LIU Junding, ZHENG Wen, et al. A bilinear strength formula for structured loess based on tensile strength and shear strength and its application[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 247-252.
    [14]
    吉恩跃,陈生水,傅中志. 掺砾心墙料拉裂力学特性试验研究[J]. 岩土力学,2019,40(12): 4777-4782,4792.

    JI Enyue, CHEN Shengshui, FU Zhongzhi. Experimental investigations on tensile cracking mechanical characteristics of gravelly core material[J]. Rock and Soil Mechanics, 2019, 40(12): 4777-4782,4792.
    [15]
    崔猛,韩尚宇,洪宝宁. 新型土工单轴拉伸试验装置的研制及应用[J]. 岩土力学,2017,38(6): 1832-1840.

    CUI Meng, HAN Shangyu, HONG Baoning. Development and application of a new geotechnical device for direct tension test[J]. Rock and Soil Mechanics, 2017, 38(6): 1832-1840.
    [16]
    黄伟,项伟,王菁莪,等. 基于变形数字图像处理的土体拉伸试验装置的研发与应用[J]. 岩土力学,2018,39(9): 3486-3494.

    HUANG Wei, XIANG Wei, WANG Jinge, et al. Development and application of digital image processing technology based soil tensile apparatus[J]. Rock and Soil Mechanics, 2018, 39(9): 3486-3494.
    [17]
    张绪涛,张强勇,高强,等. 土工直接拉伸试验装置的研制及应用[J]. 岩土工程学报,2014,36(7): 1309-1315. doi: 10.11779/CJGE201407015

    ZHANG Xutao, ZHANG Qiangyong, GAO Qiang, et al. Development and application of geotechnical direct tension test devices[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1309-1315. doi: 10.11779/CJGE201407015
    [18]
    伍红燕,赵倩,宋桂龙,等. 平地与边坡条件下野生胡枝子根构型特征研究[J]. 草业科学,2019,36(7): 1725-1733.

    WU Hongyan, ZHAO Qian, SONG Guilong, et al. Study on root architecture characteristics of wild Lespedeza bicolor in flatland and sloped sites[J]. Pratacultural Science, 2019, 36(7): 1725-1733.
    [19]
    LIANG T. KNAPPETT J A,LEUNG A K. Modelling the seismic performance of root-reinforced slopes using the finite-element method[J]. Géotechnique, 2020, 70(5): 375-391.
    [20]
    LI H D, TANG C S, CHENG Q, et al. Tensile strength of clayey soil and the strain analysis based on image processing techniques[J]. Engineering Geology, 2019, 253: 137-148. doi: 10.1016/j.enggeo.2019.03.017
    [21]
    MICHALOWSKI R L. Stability of intact slopes with tensile strength cut-off[J]. Géotechnique, 2017, 67(8): 720-727.
    [22]
    TANG C S, WANG D Y, CUI Y J, et al. Tensile strength of fiber-reinforced soil[J]. Journal of Materials in Civil Engineering, 2016, 28(7): 4016031.1-4016031.13. doi: 10.1061/(ASCE)MT.1943-5533.0001546
    [23]
    中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
    [24]
    夏振尧,刘琦,许文年,等. 多花木蓝根系与土体界面摩阻特征[J]. 水土保持学报,2018,32(1): 128-134.

    XIA Zhenyao, LIU Qi, XU Wennian, et al. Characteristics of interface friction between Indigofera amblyantha root system and soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 128-134.
    [25]
    刘琦,夏振尧,饶云康,等. 亚热带区域高陡路堑岩质边坡绿化植物的选择和配置——以宜昌市峡州大道一期快速道为例[J]. 公路交通科技,2018,35(9): 137-145.

    LIU Qi, XIA Zhenyao, RAO Yunkang, et al. Selection and configuration of plants in high and steep cutting rock slope greening in subtropical region:a case study of the first phase urban expressway of Xiazhou Avenue in Yichang[J]. Journal of Highway and Transportation Research and Development, 2018, 35(9): 137-145.
    [26]
    李本锋,朱海丽,谢彬山,等. 黄河源区河岸带高寒草甸植物根-土复合体抗拉特性研究[J]. 岩石力学与工程学报,2020,39(2): 424-432.

    LI Benfeng, ZHU Haili, XIE Binshan, et al. Study on tensile properties of root-soil composite of alpine meadow plants in the riparian zone of the Yellow River source region[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 424-432.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(426) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return