• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHANG Long, HUANG Jue, ZHONG Yongli, YAN Zhitao. Mechanical Properties of Tension-Torsion Coupling in Aluminum Conductor Steel Reinforced[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 889-896, 904. doi: 10.3969/j.issn.0258-2724.20200076
Citation: ZHANG Long, HUANG Jue, ZHONG Yongli, YAN Zhitao. Mechanical Properties of Tension-Torsion Coupling in Aluminum Conductor Steel Reinforced[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 889-896, 904. doi: 10.3969/j.issn.0258-2724.20200076

Mechanical Properties of Tension-Torsion Coupling in Aluminum Conductor Steel Reinforced

doi: 10.3969/j.issn.0258-2724.20200076
  • Received Date: 07 Mar 2020
  • Rev Recd Date: 23 Jul 2020
  • Available Online: 29 Mar 2021
  • Publish Date: 15 Aug 2021
  • The torsion parameter of the conductor is one of its basic mechanical properties. Moreover, the tension-torsioncoupling effect of iced transmission lines will greatly affect the accuracy of galloping analysis. To analyze this effect, the torsional test was carried out for the typical 7-strand aluminum conductor steel reinforced (ACSR) LGJ/JL/G1A-70/10, and the modeling and numerical analysis of the corresponding components are carried out by using the finite element simulation software ANSYS, the results ofwhich is compared with those calculated by the 4 theories based on the tension-torsioncoupling theory of wire rope. The results of numerical analysis are in good agreement with those of the torsion test. Thetwist factor values fluctuate greatly, which will lead to significant errors. Under the normal stress state, the conductor tension will produce a large torsion effect, and the section torsion of the conductor will also lead to a slight tension change. The tension-torsion coupling coefficient is not equal to the torsion-tension one. The theories based on steel wire rope do not consider the slip deformation and coordinate update of sub strand conductors, which overestimates the axial stiffness and the coupling effect of tension and torsion to a certain extent.

     

  • 晏致涛,黄静文,李正良. 基于结点6自由度的分裂导线有限元模型[J]. 工程力学,2012,29(8): 325-332. doi: 10.6052/j.issn.1000-4750.2010.08.0626

    YAN Zhitao, HUANG Jingwen, LI Zhengliang. Finite element model of split conductor based on 6-DOF node[J]. Engineering mechanics, 2012, 29(8): 325-332. doi: 10.6052/j.issn.1000-4750.2010.08.0626
    谢增,刘吉轩,刘超群,等. 架空输电线路分裂导线扭转刚度计算新方法[J]. 西安交通大学学报,2012,46(2): 100-105.

    XIE Zeng, LIU Jixuan, LIU Chaoqun, et al. A new method for calculating torsional stiffness of split conductor of overhead transmission line[J]. Journal of Xi’an Jiaotong University, 2012, 46(2): 100-105.
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 圆线同心绞架空导线: GB/T 1179—2017 [S]. 北京: 中国标准出版社, 2017.
    郭应龙, 李国兴, 尤传永. 输电线路舞动[M]. 北京: 中国电力出版社, 2003: 131-140.
    SUSLOV B M. On the modulus of wire ropes[J]. Wire and Wire Products, 1936, 111: 176-182.
    HRUSKA F H. Calculations of stresses in wire rope[J]. Wire and Wire Products, 1951, 26: 766-767,799-801.
    LANTEIGNE J. Theoretical estimation of the response of helically armored cables to tension,torsion,and bending[J]. Journal of Applied Mechanics, 1985, 52(2): 423-432. doi: 10.1115/1.3169064
    MACHIDA S, DURELLI A J. Response of a strand to axial and torsional displacements[J]. Journal of Mechanical Engineering Science, 1973, 15(4): 241-251. doi: 10.1243/JMES_JOUR_1973_015_045_02
    MC CONNELL K G, ZEMKE W P. A model to predict the coupled axial torsion properties of ACSR electrical conductors[J]. Experimental Mechanics, 1982, 22(7): 237-244. doi: 10.1007/BF02326388
    KNAPP R H. Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion[J]. International Journal for Numerical Methods in Engineering, 1979, 14(4): 515-529. doi: 10.1002/nme.1620140405
    COSTELLO G A, PHILLIPS J W. Effective modulus of twisted wire cables[J]. Journal of the Engineering Mechanics Division, 1976, 102(1): 171-181. doi: 10.1061/JMCEA3.0002092
    LOVE B A E H. A treatise on the mathematical theory of elasticity[M]. [S.l.]: Dover Publications, 1944.
    KUMAR K. S, Cochran J E. Closed-form analysis for elastic deformations of multilayered strands[J]. Journal of Applied Mechanics, 1987, 54(4): 898. doi: 10.1115/1.3173136
    XIANG L, WANG H Y, CHEN Y, et al. Elastic-plastic modeling of metallic strands and wire ropes under axial tension and torsion loads[J]. International Journal of Solids and Structures, 2017, 129: 103-118. doi: 10.1016/j.ijsolstr.2017.09.008
    JOLICOEUR C, CARDOU A. A numerical comparison of current mathematical models of twisted wire cables under axisymmetric loads[J]. Journal of Energy Resources Technology, 1991, 113(4): 241-249. doi: 10.1115/1.2905907
    RAOOF M, KRAINCANIC I. Critical examination of various approaches used for analyzing helical cables[J]. The Journal of Strain Analysis for Engineering Design, 1994, 29(1): 43-55. doi: 10.1243/03093247V291043
    CHEN Y, MENG F, GONG X. Full contact analysis of wire rope strand subjected to varying loads based on semi-analytical method[J]. International Journal of Solids and Structures, 2017, 117: 51-66. doi: 10.1016/j.ijsolstr.2017.04.004
    张秋桦. 张拉导线应力及刚度的研究[D]. 北京: 华北电力大学, 2017.
    杨光甫. 钢芯铝绞线等效弯曲刚度研究[D]. 北京: 华北电力大学, 2015.
    卢银均,刘闯,孟遂民. 钢芯铝绞线弯曲状态受力分析[J]. 三峡大学学报(自然科学版),2018,40(3): 66-69.

    LU Yinjun, LIU Chuang, MENG Suimin. Stress analysis of steel cored aluminum strand in bending state[J]. Journal of Three Gorges University (Natural Science), 2018, 40(3): 66-69.
    UTTING W S, JONES N. The response of wire rope strands to axial tensile loads—part I:experimental results and theoretical predictions[J]. International Journal of Mechanical Sciences, 1987, 29(9): 605-619. doi: 10.1016/0020-7403(87)90033-6
  • Relative Articles

    [1]ZHU He, YUAN Ming, GUO Xin. Finite Element Analysis on Layered Mechanical Properties of Carbon Fiber Wires Under Influence of Temperature[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 700-711. doi: 10.3969/j.issn.0258-2724.20210686
    [2]JI Wei, SHAO Tianyan. Finite Element Model Updating of Box Girder Bridges with Corrugated Steel Webs[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 1-11. doi: 10.3969/j.issn.0258-2724.20191198
    [3]WU Yanbin, HUANG Fanglin. Refined Finite Element Modeling Methodof Spatial Prestressed Steel Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1082-1087. doi: 10.3969/j.issn.0258-2724.2017.06.007
    [4]GAO Qing, . THE DAMAGE-COUPLED TIME-DEPENDENT MULTIAXIAL THEORETICAL MODEL: II. THE ENGINEERING APPLICABILITY OF FINITE ELEMENT IMPLEMENTATION[J]. Journal of Southwest Jiaotong University, 2012, 25(2): 230-235. doi: 10.3969/j.issn.0258-2724.2012.02.010
    [5]LIANG Shangming, YAN Xijiang, WANG Xianzhou. Coupled Finite Element Thermal-Mechanical Analysis of Gravity Support System of International Thermonuclear Experimental Reactor[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 738-742.
    [6]LI Ruiping, ZHOU Ning, MEI Guiming, ZHANG Weihua. Finite Element Model for Catenary in Initial Equilibrium State[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 732-737.
    [7]MAOJian-qiang. Finite Element Method for Tunnel with Prefabricated Lining[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 423-427.
    [8]SUNJi-ping, ZHANG Chang-sen. Effect of Crowd on Propagation Characteristic of Electromagnetic Waves in Limited Underground Space[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 403-407.
    [9]FUHai-ying, HE Chang-rong, CHEN Qun. 2-D Finite Element Analysis of Prestressed Anchorage Sheet-Pile Wall[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 389-392.
    [10]ZHANG Xue-ling, XU Yan-shen. Data Exchange Between CAD and Finite Element Models in Modular Design[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 584-587.
    [11]YUAN Feng, CHEN Qiu. Research on FEM Metacomputing Environment DPFEM[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 655-658.
    [12]LIUChang-hong, CHENQiu. ANew Solution to Structural Fuzzy Finite Element Equations Based onMonosource Fuzziness[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 84-87.
    [13]DUZan-hua. Experimental Research on Limit Torque of RC Members under the Combined Action of Axial Tension and Bending Twisting Moment[J]. Journal of Southwest Jiaotong University, 2000, 13(2): 129-132.
  • Cited by

    Periodical cited type(4)

    1. 韩维印,梁鹏,丛佩玺,石荣荣. 基于物理特性的EWIS运动线束仿真研究. 飞机设计. 2024(02): 29-34 .
    2. 吕笑文,刘叶诚,谭海恒,徐志彪. 高速铁路接触网吊弦拉扭多工况耦合力学性能. 计算机仿真. 2024(08): 155-160 .
    3. 李彦哲,周成熙,赵珊鹏,杨义盟. 兰新高铁大风区减档距防舞器有效性分析. 山东大学学报(工学版). 2024(06): 130-138+146 .
    4. 万建成,秦剑,乔良,王顺岭. 张力放线施工工艺因素对导线松股的影响及其风险评价. 广东电力. 2023(08): 113-123 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.0 %FULLTEXT: 35.0 %META: 63.0 %META: 63.0 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.5 %其他: 7.5 %其他: 0.3 %其他: 0.3 %上海: 1.0 %上海: 1.0 %东京: 0.9 %东京: 0.9 %东莞: 0.5 %东莞: 0.5 %临汾: 0.3 %临汾: 0.3 %九江: 0.3 %九江: 0.3 %保定: 0.3 %保定: 0.3 %北京: 2.9 %北京: 2.9 %十堰: 0.7 %十堰: 0.7 %南京: 0.7 %南京: 0.7 %南通: 0.2 %南通: 0.2 %台州: 0.2 %台州: 0.2 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 2.1 %天津: 2.1 %宣城: 0.7 %宣城: 0.7 %广州: 0.2 %广州: 0.2 %张家口: 2.1 %张家口: 2.1 %惠州: 0.2 %惠州: 0.2 %成都: 2.6 %成都: 2.6 %扬州: 1.4 %扬州: 1.4 %无锡: 0.3 %无锡: 0.3 %杭州: 1.2 %杭州: 1.2 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.2 %沈阳: 0.2 %泰州: 0.7 %泰州: 0.7 %洛阳: 0.2 %洛阳: 0.2 %深圳: 0.3 %深圳: 0.3 %清远: 0.2 %清远: 0.2 %温州: 0.5 %温州: 0.5 %湛江: 0.3 %湛江: 0.3 %漯河: 7.4 %漯河: 7.4 %石家庄: 1.5 %石家庄: 1.5 %石河子: 0.2 %石河子: 0.2 %芒廷维尤: 15.4 %芒廷维尤: 15.4 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.2 %苏州: 0.2 %西宁: 38.4 %西宁: 38.4 %西安: 0.3 %西安: 0.3 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.3 %贵阳: 0.3 %运城: 0.9 %运城: 0.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 0.3 %郑州: 0.3 %重庆: 0.5 %重庆: 0.5 %锦州: 0.2 %锦州: 0.2 %长沙: 1.9 %长沙: 1.9 %青岛: 0.2 %青岛: 0.2 %其他其他上海东京东莞临汾九江保定北京十堰南京南通台州哥伦布嘉兴天津宣城广州张家口惠州成都扬州无锡杭州格兰特县武汉沈阳泰州洛阳深圳清远温州湛江漯河石家庄石河子芒廷维尤芝加哥苏州西宁西安诺沃克贵阳运城邯郸郑州重庆锦州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article views(598) PDF downloads(13) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return