• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
MA Fangli, XU Yang, XU Peng. Comparison of AOA Localization in Ultrashort Wave under Various Azimuth Calculation Methods[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 713-719. doi: 10.3969/j.issn.0258-2724.20200014
Citation: MA Fangli, XU Yang, XU Peng. Comparison of AOA Localization in Ultrashort Wave under Various Azimuth Calculation Methods[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 713-719. doi: 10.3969/j.issn.0258-2724.20200014

Comparison of AOA Localization in Ultrashort Wave under Various Azimuth Calculation Methods

doi: 10.3969/j.issn.0258-2724.20200014
  • Received Date: 10 Jan 2020
  • Rev Recd Date: 13 Oct 2020
  • Available Online: 06 May 2021
  • Publish Date: 15 Aug 2021
  • Given that azimuth calculation is fundamental to angle-of-arrival (AOA) localization, the spherical approximation method and normal cylindrical projection-plane method for azimuth calculation on geodetic coordinates are proposed firstly. Furthermore, the AOA localization equations based on spherical accuracy calculation, spherical approximation calculation, and normal cylindrical projection-rectangle are established respectively. Finally, the unconstrained nonlinear programming method is used to establish the three optimization AOA localization models on geodetic coordinates, which correspond to the above equations respectively, and the models are verified by the point-by-point grid search method. The numerical results show without considering the direction-finding error, the spherical accuracy AOA localization model has the highest precision, which is independent of latitude, but its positioning operation time is the longest. As for the spherical approximation AOA localization model and the normal cylindrical projection-rectangle AOA localization model, both have a high precision, the positioning error of the latter is slightly higher than that of the former, and its positioning operation time is also longer than that of the former. The positioning accuracy of AOA localization network can be improved by increasing either the direction finding accuracy of each site or the number of direction finding sites. The appropriate AOA localization model is selected according to the overall positioning requirements of the timeliness and precision.

     

  • loading
  • 范平志, 邓平, 刘林. 蜂窝网无线定位[M]. 北京: 电子工业出版社, 2002: 61-74.
    XU Jun, MA Maode, LAW C L. Cooperative angle-of-arrival position localization[J]. Measurement, 2015, 59: 302-313.
    HE Y, BEHNAD A. Accuracy analysis of the two-reference-node angle-of-arrival localization system[J]. IEEE Wireless Communications Letters, 2015, 4(3): 329-332. doi: 10.1109/LWC.2015.2415788
    田晗. 多站测向交叉定位中的非线性改进最小二乘法[J]. 科技通报,2018,34(5): 112-116.

    TIAN Han. The improved nonlinear least squares for cross location of multi station direction[J]. Bulletin of Science and Technology, 2018, 34(5): 112-116.
    白晶,马燕飞,刘晓丽. 考虑地球曲率情况下测向定位系统中的最优交会角[J]. 无线电通信技术,2019,45(1): 78-83. doi: 10.3969/j.issn.1003-3114.2019.01.15

    BAI Jing, MA Yanfei, LIU Xiaoli. Optimum cut angle in bearing-only location system with consideration of earth curvature[J]. Radio Communications Technology, 2019, 45(1): 78-83. doi: 10.3969/j.issn.1003-3114.2019.01.15
    王存良,朱喜明. 无源测向定位的地球椭球面算法[J]. 电光系统,2018(3): 31-35.

    WANG Cunliang, ZHU Ximing. Earth ellipsoid algorithm for passive bearing-only location[J]. Electronic and Electro-Optical Systems, 2018(3): 31-35.
    马方立,徐扬,徐鹏. 基于大地经纬度的二维TDOA无源定位[J]. 通信学报,2019(5): 136-143.

    MA Fangli, XU Yang, XU Peng. 2D-TDOA passive location based on geodetic longitude and latitude[J]. Journal on Communications, 2019(5): 136-143.
    ITU-R. Spectrum monitoring handbook[M]. Geneva: ITU, 2011: 145.
    国家无线电办公室. 省级无线电监测设施建设规范和技术要求(试行): 国无办[2019]3号[S]. 2019, 北京: [出版者不详].
    罗来恩. 坐标方位角计算新方法[J]. 测绘通报,2004(5): 63-64. doi: 10.3969/j.issn.0494-0911.2004.05.023

    LUO Lai’en. A new method for calculating coordinate azimuth[J]. Bulletin of Surveying and Mapping, 2004(5): 63-64. doi: 10.3969/j.issn.0494-0911.2004.05.023
    柳茂春. 无线电干扰计算[M]. 北京: 国防工业出版社, 1988: 132-133.
    国家地震局地球物理研究所. 近震分析[M]. 北京: 地震出版社, 1978: 31-32.
    季凯敏,王解先. 利用大地坐标计算真方位角的两种方法[J]. 工程勘察,2009,37(4): 84-86.

    JI Kaimin, WANG Jeixian. Two ways of calculating true azimuth by geodetic coordinates[J]. Geotechnical Investigation & Surveying, 2009, 37(4): 84-86.
    孔祥元, 郭际明, 刘宗泉. 大地测量学基础[M]. 2版. 武汉: 武汉大学出版社, 2010: 25-58.
    吕晓华, 李少梅. 地图投影原理与方法[M]. 北京: 测绘出版社, 2016: 166-176.
    MA Fangli, XU Yang, XU Peng. A nonlinear programming based universal optimization model of TDOA passive location[C]//Proceedings of 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE2017). Nanjing: IEEE Press, 2017: 399-402.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(520) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return