• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
DING Min, WANG Jiajia, JIANG Xiugen, CAO Qiongqiong, WANG Hongzhi. Out-of-Plane Stability Analysis Method for Circular Arch Structures[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 37-46. doi: 10.3969/j.issn.0258-2724.20191158
Citation: DING Min, WANG Jiajia, JIANG Xiugen, CAO Qiongqiong, WANG Hongzhi. Out-of-Plane Stability Analysis Method for Circular Arch Structures[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 37-46. doi: 10.3969/j.issn.0258-2724.20191158

Out-of-Plane Stability Analysis Method for Circular Arch Structures

doi: 10.3969/j.issn.0258-2724.20191158
  • Received Date: 04 Dec 2019
  • Rev Recd Date: 20 Apr 2020
  • Available Online: 14 Dec 2020
  • Publish Date: 01 Feb 2021
  • In order to analyze the out-of-plane stability behavior of circular arch structures, according to the deformation correlation of circular arch with circular curved beam, the equilibrium equations of circular curved beam were firstly established by taking secondary moment effect into account. Combined with the geometric equation and physical equation of circular curved beam, the deflection control equation and torsion angle control equation of circular curved beam with free torsion were derived by considering large displacement. Both the general formats and corresponding simplified formats of analytical solution for circular curved beam deflection and torsion angle were obtained. Meanwhile, the expressions for deformation and internal force of circular curved beam were also derived. On this basis, the methods to analyze the out-of-plane bifurcation instability and extreme point instability of circular arch structure were presented. Critical load coefficients and their instability modes of four kinds of circular arch structure were calculated when out-of-plane bifurcation instability occurs, and the calculation results between the proposed model and the models from the literature were discussed; their load-displacement curves were calculated, and the extreme point instability of circular arch structures was analyzed. The results show that the critical load coefficient of the circular arch with two ends simply supported can be calculated by this model and has no difference with other models. In addition, this model is also useful to calculate the critical load coefficient of that with single hinge at mid-span or that with two ends inserted supported which are rarely seen in research. The out-of-plane bifurcation instability modes of all kinds of circular arch under in-plane uniformly distributed radial load are in the form of single symmetric wave. The radial load does not change the linear character of the out-of-plane load vs. displacement curve, but reduces the out-of-plane flexural rigidity. When the radial load reaches a certain value, the out-of-plane flexural rigidity becomes 0, and then the out-of-plane instability occurs.

     

  • loading
  • 姚玲森. 曲线梁[M]. 北京: 人民交通出版社, 1989: 1-2.
    王佳佳,丁敏,蒋秀根,等. 考虑二阶弯矩效应的自由扭转圆曲梁静力分析[J]. 中国农业大学学报,2019,24(3): 109-116. doi: 10.11841/j.issn.1007-4333.2019.03.14

    WANG Jiajia, DING Min, JIANG Xiugen, et al. Static analysis of circular curved beam with free torsion considering second-order moment effect[J]. Journal of China Agricultural University, 2019, 24(3): 109-116. doi: 10.11841/j.issn.1007-4333.2019.03.14
    铁摩辛柯 S P, 盖莱 J M. 弹性稳定理论[M]. 2版. 北京: 科学出版社, 1965: 274-281.
    项海帆, 刘光栋. 拱结构的稳定与振动[M]. 北京: 人民交通出版社, 1991: 75-87.
    窦超. 钢拱平面外稳定性能及设计方法[D]. 北京: 清华大学, 2012.
    郭彦林, 窦超. 现代拱形钢结构设计原理与应用[M]. 北京: 科学出版社, 2013: 61-86.
    窦超,郭彦林. 压弯圆弧拱平面外稳定承载力设计方法[J]. 建筑结构学报,2012,33(7): 27-36.

    DOU Chao, GUO Yanlin. Out-of-plane inelastic stability design of circular arches under combination of compression and bending[J]. Journal of Building Structures, 2012, 33(7): 27-36.
    窦超,郭彦林. 圆弧拱平面外弹性弯扭屈曲临界荷载分析[J]. 工程力学,2012,29(3): 83-89,94.

    DOU Chao, GUO Yanlin. Study on flexural-torsional buckling load of circular arches[J]. Engineering Mechanics, 2012, 29(3): 83-89,94.
    郭彦林,赵思远,窦超. 面外支撑非均匀布置的箱型与圆管截面拱平面外弹性屈曲[J]. 工程力学,2014,31(7): 29-35.

    GUO Yanlin, ZHAO Siyuan, DOU Chao. Out-of-plane elastic buckling of close-section steel arches with non-uniform distributed lateral bracings[J]. Engineering Mechanics, 2014, 31(7): 29-35.
    窦超,郭彦林. 均匀受压圆弧拱平面外弹塑性稳定设计方法[J]. 建筑结构学报,2012,33(1): 104-110.

    DOU Chao, GUO Yanlin. Out-of-plane inelastic stability and strength design of circular arches in uniform compression[J]. Journal of Building Structures, 2012, 33(1): 104-110.
    窦超,郭彦林. 受弯圆弧拱平面外稳定承载力分析[J]. 建筑结构学报,2012,33(7): 18-26.

    DOU Chao, GUO Yanlin. Out-of-plane inelastic stability of circular arches under bending moment[J]. Journal of Building Structures, 2012, 33(7): 18-26.
    邓婷. 基于大位移模型的圆拱几何非线性分析及其应用[D]. 北京: 中国农业大学, 2018.
    CHAI H Y. Flexural-torsional stability of curved beams[J]. Journal of Engineering Mechanics Division, 1982, 108(6): 1351-1369.
    CHAI H Y, PFEIFFER P A. Elastic stability of curved members[J]. Journal of Structural Engineering, 1983, 109(12): 2922-2940.
    CHAI H Y, PFEIFFER P A. Buckling of curved beams with in-plane deformation[J]. Journal of Structural Engineering, 1984, 106(2): 291-300.
    YANG Y B, KUO S R. Effect of curvature on stability of curved beams[J]. Journal of Structural Engineering, 1987, 113(6): 1185-1202. doi: 10.1061/(ASCE)0733-9445(1987)113:6(1185)
    YANG Y B, KUO S R. Curved beam elements for nonlinear analysis[J]. Journal of Engineering Mechanics, 1989, 115(4): 840-855. doi: 10.1061/(ASCE)0733-9399(1989)115:4(840)
    YANG Y B, KUO S R. Static stability of curved thin-walled beams[J]. Journal of Engineering Mechanics, 1986, 112(8): 821-841. doi: 10.1061/(ASCE)0733-9399(1986)112:8(821)
    段炼. 曲梁弯扭屈曲分析[J]. 工程力学,1989,6(3): 41-54.

    DUAN Lian. Analysis of bending and torsional buckling of curved beam[J]. Engineering Mechanics, 1989, 6(3): 41-54.
    KANG Y J, YOO C H. Thin-walled curved beams I formulation of nonlinear equations[J]. Journal of Engineering Mechanics,ASCE, 1994, 120(10): 2072-2101. doi: 10.1061/(ASCE)0733-9399(1994)120:10(2072)
    KANG Y J, YOO C H. Thin-walled curved beams II analytical solution for bucking of arches[J]. Journal of Engineering Mechanics, 1994, 120(10): 2102-2125. doi: 10.1061/(ASCE)0733-9399(1994)120:10(2102)
    许强,童根树. 任意开口薄壁截面圆弧曲梁的通用线性理论[J]. 工程力学,2002,19(6): 141-147. doi: 10.3969/j.issn.1000-4750.2002.06.028

    XU Qiang, TONG Genshu. General linear theory of curved beam with arbitrary thin-wall section[J]. Engineering Mechanics, 2002, 19(6): 141-147. doi: 10.3969/j.issn.1000-4750.2002.06.028
    杨永华. 弹性开口薄壁截面圆弧钢拱的稳定承载力研究[D]. 上海: 同济大学, 2006.
    刘磊,许克宾. 曲杆结构非线性分析中的直梁单元和曲梁单元[J]. 铁道学报,2001,23(6): 72-76. doi: 10.3321/j.issn:1001-8360.2001.06.016

    LIU Lei, XU Kebin. Curved-beam element and straight-beam element used in the nonlinear analysis of curved frame structures[J]. Journal of the China Railway Society, 2001, 23(6): 72-76. doi: 10.3321/j.issn:1001-8360.2001.06.016
    刘磊. 大跨度混凝土桥梁的双非线性分析[D]. 北京: 北京交通大学, 2000.
    程鹏. 两铰圆弧拱非线性弯曲理论和弹塑性稳定[D]. 杭州: 浙江大学, 2005.
    HEINS C P. Bending and torsional design in structural members[M]. [S.l.]: Heath and Company, 1975: 124-125.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views(644) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return