• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
XIAO Feipeng, ZONG Qidi, WANG Jingang, CHEN Jun, LIU Ji. Moisture Susceptibility of SBS and Coarse Crumb Rubber Composite Modified Asphalt Permeable Mixture[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 839-846. doi: 10.3969/j.issn.0258-2724.20191116
Citation: XIAO Feipeng, ZONG Qidi, WANG Jingang, CHEN Jun, LIU Ji. Moisture Susceptibility of SBS and Coarse Crumb Rubber Composite Modified Asphalt Permeable Mixture[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 839-846. doi: 10.3969/j.issn.0258-2724.20191116

Moisture Susceptibility of SBS and Coarse Crumb Rubber Composite Modified Asphalt Permeable Mixture

doi: 10.3969/j.issn.0258-2724.20191116
  • Received Date: 11 Dec 2019
  • Rev Recd Date: 04 Mar 2020
  • Available Online: 08 Apr 2020
  • Publish Date: 15 Aug 2021
  • Permeable asphalt concrete (PAC) possesses good capacity of drainage and noise reduction due to its large porosity. Nevertheless, it is prone to suffer water damage. Coarse crumb rubber (CCR) and styrene-butadiene-styrene block copolymer (SBS) were used to prepare composite modified asphalt. Freeze-thaw splitting tensile strength ratio (TSR) was employed to evaluate the moisture susceptibility of PAC. The influences of the contents of SBS, coarse crumb rubber, asphalt binder, and hydrated lime as well as the nominal maximum particle size (NMPS) and passing percentage of key sieve sizes on the moisture susceptibility of PAC were explored to reveal the moisture damage resistance mechanism of SBS and CCR composite modified asphalt (SBS/CRMA) mixture. The results indicate that the increases in SBS content, the NMPS of aggregates, and the addition of slaked lime can effectively increase the TSR value. To optimize moisture susceptibility and cost efficiency, it is recommended that the favorable contents of SBS and CCR are 6% and 10%, respectively. Moreover, through grey relational analysis, the key sieve sizes that affect the moisture susceptibility of permeable asphalt mixtures with various NMPS were presented as well.

     

  • XIAO F, HERNDON D A, AMIRKHANIAN S, et al. Aggregate gradations on moisture and rutting resistances of open graded friction course mixtures[J]. Construction and Building Materials, 2015, 85: 127-135.
    PAN Qinxue, QIAN Guoping, LIU Hongfu, et al. Applicability analysis on index values of water stability of asphalt mixture[C]//Proceedings of the 4th International Conference on GreenBuilding, Materials and Civil Engineering, GBMCE 2014. Florida: CRC Press, 2015: 377-381.
    孙璐,辛宪涛,任皎龙. 纳米改性沥青混合料路用性能[J]. 东南大学学报(自然科学版),2013,43(4): 873-876.

    SUN Lu, XIN Xiantao, REN Jiaolong. Pavement performance of nanomaterial modified asphalt mixture[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(4): 873-876.
    YUAN Yuqing, GAO Danying, ZHAO Jun, et al. Experimental study on water stability of asphalt mixture[J]. Advonced Materials Research, 2011, 266: 135-138.
    LI Junxiao, FU Wei, ZANG Hechao. Performance on water stability of cement-foamed asphalt cold recycled mixture[C]//The 8th International Conference on Mechanical and Aerospace Engineering (ICMAE 2017). Prague: IEEE, 2018: 2005-2010.
    LIU Minghui. Experimental study on water stability of cold recycled mixture stabilized with emulsified asphalt[J]. Applied Mechanics and Materials, 2012, 204/205/206/207/208: 1914-1917.
    郭平. Sasobit®温拌沥青混合料水稳定性能研究[J]. 郑州大学学报(工学版),2010,31(5): 36-39. doi: 10.3969/j.issn.1671-6833.2010.05.009

    GUO Ping. Study on water stability of Sasobit® warm mixture asphalt[J]. Journal of Zhengzhou University (Engineering Science), 2010, 31(5): 36-39. doi: 10.3969/j.issn.1671-6833.2010.05.009
    HUANG Weirong, LIU Tao, YANG Donglai. Research of grading ’s influence on asphalt mixture ’s water stability[C]//Proceedings of the 2011 IEEE International Conference on Automation and Logistics (ICAL). Piscataway: IEEE, 2011: 456-460.
    GUO Xuedong, CAO Jian, FANG Xiangyang. Study of water stability of asphalt mixture based on residual water[J]. Frontiers of Green Building,Materials and Civil Engineering, 2011, 71/72/73/74/75/76/77/78: 1791-1794.
    GUO Xuedong, CAO Jian, FANG Xiangyang. Study of water stability of AC and SMA asphalt mixture based on water content[J]. Advanced Materials Research, 2012, 457/458: 435-438. doi: 10.4028/www.scientific.net/AMR.457-458.435
    SHEN Guoyin. Common diseases and preventive measures during the asphalt concrete pavement construction[C]//Proceedings of the 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM 2012). Los Alamitos: IEEE Computer Society, 2012: 198-203.
    丛林,郑晓光,吕伟民. 细集料泥土含量对沥青混合料水稳定性的影响[J]. 同济大学学报(自然科学版),2006,34(5): 619-623.

    CONG Lin, ZHENG Xiaoguang, LV Weimin. Effect of clay content in fine aggregate on water stability of asphalt mixture[J]. Journal of Tongji University (Natural Science), 2006, 34(5): 619-623.
    MA Tao, HUANG Xiaoming, ZHAO Yongli, et al. Aging behaviour and mechanism of SBS-modified asphalt[J]. Journal of Testing and Evaluation, 2012, 40(7): 1186-1191.
    WANG Tao, XIAO Feipeng, AMIRKHANIAN S, et al. A review on low temperature performances of rubberized asphalt materials[J]. Construction and Building Materials, 2017, 145: 483-505.
    KADLECEK S V, MODRY S, KADLECEK J V. Size effect of test specimens on tensile splitting strength of concrete:general relation[J]. Materials and Structures/Materiaux et Constructions, 2002, 34: 28-34.
    YANG Wenfeng. Effect and its mechanisms of hydrated lime on water stability of hot asphalt mixture[C]//Materials, Mechanical and Manufacturing Engineering. Zurich-Durnten: Trans Tech Publications Ltd., 2014: 22-26.
    肖飞鹏,宗启迪,陈军,等. 等离子体微表处理胶粉改性沥青工艺条件优化分析[J]. 中国公路学报,2019,32(4): 170-176.

    XIAO Feipeng, ZONG Qidi, CHEN Jun, et al. Processing conditions optimization analysis of crumb rubber modified asphalt treated by plasma micrometer processing method[J]. China Journal of Highway and Transport, 2019, 32(4): 170-176.
    张英,刘昌清,毛国军,等. LSPM沥青用量与水稳定性的关系探讨[J]. 建材技术与应用,2015(3): 8-9. doi: 10.3969/j.issn.1009-9441.2015.03.003

    ZHANG Ying, LIU Changqing, MAO Guojun, et al. Relationship between LSPM asphalt amount and water stability[J]. Research and Application of Building Materials, 2015(3): 8-9. doi: 10.3969/j.issn.1009-9441.2015.03.003
  • Relative Articles

    [1]LI Fuhai, YANG Zongchi, LIU Gengyuan, LIU Menghui, WU Haonan, CHEN Zhao, LI Guhua. Flexural Performance of PP-ECC Beams Under Coupling of Freeze-Thaw Cycles and Bending Loads[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 53-62. doi: 10.3969/j.issn.0258-2724.20220645
    [2]ZHOU Danfeng, ZHU Pengxiang, QU Minghe, WANG Lianchun, LI Jie. Influence of Bridge Parameters on Vehicle-Bridge Coupling Stability of Maglev System[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 823-832. doi: 10.3969/j.issn.0258-2724.20240381
    [3]LI Maohong, LIANG Lei, GUO Qiuxu, FU Xiaojie, HUANG Qunyi, ZHANG Shengli, WANG Ping. Whisker-Reinforced Repairing Mortar for High-Speed Railway Concrete[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240037
    [4]ZHAO Hua, YUAN Weiguang, WEI Chengjin, LENG Donghang, CHEN Peng. Experimental Study on Seismic Performance of Concrete Frame Structures Reinforced with High-Strength Steel Bars[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250036
    [5]WANG Min, HE Zhaoyi, ZHOU Wen, SONG Gang. Prediction Model for Water Film Thickness of Drainage Asphalt Pavement under Ultimate Rainfall Intensity[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230159
    [6]ZHAO Haitao, DING Jian, YANG Guo, XIANG Yu, XU Wen, CHEN Yuzhi. Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134
    [7]HE Jingyuan, GAO Weihao, ZHANG Jian, WANG Chuan, LI Zhaofeng, YOU Hao. Freeze-Thaw Resistance of Red Mud-Based Stabilized Crushed Stone[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230350
    [8]LI Jin, SHI Yuefeng, XIAO Xin, LOU Liangwei, CAI Degou, XIAO Feipeng. Freeze-Thaw Damage Evolution Model of Asphalt Concrete for Waterproofing Layer in High-Speed Railways[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 281-288. doi: 10.3969/j.issn.0258-2724.20220335
    [9]YU Jiang, ZHAO Qun, YE Fen, SONG Qingqing. Low Temperature Rheological Performance Analysis of Rubber Modified Asphalt under Heat Aging Process[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 108-115. doi: 10.3969/j.issn.0258-2724.20180987
    [10]WANG Wei, ZHANG Xifa, LÜ Yan. Experimental Study on Frost Heave, Thaw Settlement and Thermal Properties of Foundation Soils along China-Russia Crude Oil Pipeline[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 733-742. doi: 10.3969/j.issn.0258-2724.20180801
    [11]WANG Zhen, SHEN Mingrong, LIU Ang. Water-Rock Interaction Characteristics and Softening Mechanism of Calcareous Mudstone[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1061-1066. doi: 10.3969/j.issn.0258-2724.2015.06.012
    [12]HUANG Guanhua, ZHANG Weihua, FU Yongpei, LIANG Shulin, WANG Xingyu. Stability Analysis of Parametric Vibration for Gear Transmission System in High-Speed Train[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1010-1015. doi: 10.3969/j.issn.0258-2724.2014.06.012
    [13]ZHAO Guohui, LIU Jianxin, LI Yu. Parameter Optimization of Fluid Viscous Damper Based on Stochastic Vibration[J]. Journal of Southwest Jiaotong University, 2013, 26(6): 1002-1007. doi: 10.3969/j.issn.0258-2724.2013.06.006
    [14]ZHANG Wencheng, ZHOU Suihua, QU Yang. Improved Particle Swarm Optimization Algorithm for Sound Absorption Model with Polyurea Coating[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 698-704. doi: 10.3969/j.issn.0258-2724.2012.04.026
    [15]PENG Qi-Yuan, JIA Xiao-Qiu, GUAN Xiao-Yu. Train Line Planning Model with Stochastic Stability in Passenger Flow Assignment Scheme for Passenger-Dedicated Line[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 143-147. doi: 10.3969/j.issn.0258-2724.2011.01.023
    [16]SUN Yue, XIA Chenyang, DAI Xin, SU Yugang. Efficiency Analysis and Parameter Optimization of CPT System[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 836-842. doi: 10.3969/j.issn.0258-2724.2010.06.003
    [17]WANG Tao, LI Jikun, LIU Li. Stability and L2-Gain of Linear Parameter-Varying Subsection System[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 688-692.
    [18]Cao Dengqing. Lateral Stability Analysis for Rail Vehicle Dynamic Models with Uncertain Parameters[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 253-258.
  • Cited by

    Periodical cited type(12)

    1. 刘冰. 透水沥青混凝土抗飞散性能研究. 江西建材. 2025(01): 37-40 .
    2. 宋光辉. 高黏改性沥青的低温性能及黏附特性研究. 公路. 2024(01): 302-310 .
    3. 郭烽仁,郭溦. 计及渗透系数的海绵城市路面透水沥青混合料配比设计优化. 河南工程学院学报(自然科学版). 2024(01): 25-30 .
    4. 臧广远,祁聪,李冠玉,李启仲,况栋梁,韩善剑,陈华鑫. 轻质重质原油掺配比例对石油沥青路用性能和结构的影响. 应用化工. 2024(08): 1792-1796+1802 .
    5. 张惠民. 橡胶/SBS复合改性SMA-13结构参数及路用性能研究. 山西交通科技. 2024(05): 44-47+53 .
    6. 朱辰,金光来,李一鹤,吴德磊. 基于复合改性技术的排水沥青混合料研究. 现代交通技术. 2023(01): 12-15+32 .
    7. 刘兰君,阎宇彤. 改性橡胶透水混凝土基本性能研究. 山西建筑. 2023(20): 104-108 .
    8. 宋莉芳,薛亚楠,薛哲,夏慧芸,牛艳辉. 天然橡胶/丁苯橡胶胶粉对改性沥青性能的影响. 橡胶工业. 2023(10): 789-795 .
    9. 李雨师,邹雯炆,杨光,李长春. 胶粉掺量对复合橡胶改性沥青流变特性的影响. 山西建筑. 2022(06): 105-108 .
    10. 张海涛,郭志超,刘作强. 水温对透水沥青混合料力学性能的影响. 重庆理工大学学报(自然科学). 2022(05): 115-121 .
    11. 陆宇,杜骋,金光来,李一鹤. 基于集料波动的沥青混合料水稳定性研究. 现代交通技术. 2021(05): 1-5 .
    12. 高建华. 高速公路橡胶粉改性混凝土施工技术分析. 运输经理世界. 2021(23): 27-29 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.4 %FULLTEXT: 33.4 %META: 64.8 %META: 64.8 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.2 %其他: 5.2 %Central District: 0.2 %Central District: 0.2 %Rochester: 0.2 %Rochester: 0.2 %上海: 0.2 %上海: 0.2 %东莞: 0.2 %东莞: 0.2 %临汾: 0.4 %临汾: 0.4 %乐山: 1.2 %乐山: 1.2 %九龙: 0.2 %九龙: 0.2 %云浮: 0.2 %云浮: 0.2 %兰州: 0.6 %兰州: 0.6 %北京: 4.2 %北京: 4.2 %十堰: 0.2 %十堰: 0.2 %南京: 1.0 %南京: 1.0 %哥伦布: 0.4 %哥伦布: 0.4 %唐山: 0.2 %唐山: 0.2 %天津: 0.8 %天津: 0.8 %宣城: 0.2 %宣城: 0.2 %山景城: 0.4 %山景城: 0.4 %广州: 0.2 %广州: 0.2 %张家口: 2.4 %张家口: 2.4 %成都: 3.4 %成都: 3.4 %扬州: 0.2 %扬州: 0.2 %无锡: 0.2 %无锡: 0.2 %杭州: 0.8 %杭州: 0.8 %桂林: 0.2 %桂林: 0.2 %池州: 1.2 %池州: 1.2 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.4 %济南: 0.4 %漯河: 0.4 %漯河: 0.4 %石家庄: 1.4 %石家庄: 1.4 %芒廷维尤: 16.8 %芒廷维尤: 16.8 %芝加哥: 0.4 %芝加哥: 0.4 %西宁: 47.8 %西宁: 47.8 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.4 %运城: 1.4 %郑州: 0.2 %郑州: 0.2 %重庆: 1.0 %重庆: 1.0 %金昌: 0.2 %金昌: 0.2 %长沙: 4.4 %长沙: 4.4 %青岛: 0.2 %青岛: 0.2 %其他Central DistrictRochester上海东莞临汾乐山九龙云浮兰州北京十堰南京哥伦布唐山天津宣城山景城广州张家口成都扬州无锡杭州桂林池州洛阳济南漯河石家庄芒廷维尤芝加哥西宁西雅图贵阳运城郑州重庆金昌长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views(540) PDF downloads(10) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return