• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
XIA Yimin, LI Qingyou, DENG Chaohui, LONG Bin, YAO Jie. Rapid Identification Method for Lithology of Tunnel Based on Lightweight Model[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 420-427. doi: 10.3969/j.issn.0258-2724.20191057
Citation: XIA Yimin, LI Qingyou, DENG Chaohui, LONG Bin, YAO Jie. Rapid Identification Method for Lithology of Tunnel Based on Lightweight Model[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 420-427. doi: 10.3969/j.issn.0258-2724.20191057

Rapid Identification Method for Lithology of Tunnel Based on Lightweight Model

doi: 10.3969/j.issn.0258-2724.20191057
  • Received Date: 04 Nov 2019
  • Rev Recd Date: 27 Apr 2020
  • Available Online: 15 Dec 2020
  • Publish Date: 15 Apr 2021
  • In order to solve the problems of long identification time, low security, and high subjectivity in the existing identification methods of tunnel lithology, given the fact that composition characteristics differ among lithological surfaces, a rapid identification method of tunnel lithology based on the lightweight model and rock images was proposed. First, six types of major rocks in tunnels, including gneiss, granite, limestone, marble, tuff and sandstone, were collected by camera, and the rock image data set was established and divided into training set, verification set and test set. Then, based on the lightweight model MobileNet V2, pre-training was conducted on the ImageNet data set, the structure of the model classifier was improved to adapt to the rock data set, and 1170 images of the training set were trained using the transfer learning method for model training to obtain the rock lithology recognition model. Finally, a total of 300 test set images were selected and tested offline, and compared with those of the VGG16 model and the SVM (support vector machine) model. The experimental results show that the overall evaluation indexes of the model on the test data set were above 85%, of which the evaluation indexes of tuff reached more than 94%, the size of the model was only 28.3 MB, and the average recognition time was 2880 ms, indicating that the recognition model was small in size, high in recognition accuracy, and fast in recognition time, which is superior to traditional methods in accuracy and recognition speed.

     

  • loading
  • 管会生,吴和北,陶伟,等. 深埋斜井隧道双模式盾构刀盘驱动扭矩分析[J]. 现代隧道技术,2015,52(6): 163-169.

    GUAN Huisheng, WU Hebei, TAO Wei, et al. Analysis of the cutterhead driving torque of a dual-mode shield used for a deeply buried inclined shaft[J]. Modern Tunnelling Technology, 2015, 52(6): 163-169.
    刘书斌, 方勇, 周超月, 等. 承压溶腔对隧道开挖稳定性影响的模型试验[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3781-3791.

    LIU Shubin, FANG Yong, ZHOU Chaoyue, et al. Model test of tunnel excavation stability influenced by concealed cave with internal water pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3781-3791.
    严鹏,张晨,高启栋,等. 不同损伤程度下岩石力学参数变化的声波测试[J]. 岩土力学,2015,36(12): 3425-3432.

    YAN Peng, ZHANG Chen, GAO Qidong, et al. Acoustic wave test on mechanical properties variation of rocks under different damage degrees[J]. Rock and Soil Mechanics, 2015, 36(12): 3425-3432.
    苏凯,张妍珺,伍鹤皋,等. 隧洞开挖过程中围岩安全系数演化特征与支护时机选择方法研究[J]. 岩石力学与工程学报,2019,38(增刊1): 2964-2975.

    SU Kai, ZHANG Yanjun, WU Hegao, et al. Evolution of surrounding rock safety factor and support installation time during tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2964-2975.
    WEI X S, QIN X H, RONG C L, et al. Image classification recognition for rock micro-thin section based on probabilistic neural networks[J]. Applied Mechanics and Materials, 2014, 602-605: 2147-2152. doi: 10.4028/www.scientific.net/AMM.602-605.2147
    罗佳,刘大刚. 基于自适应阈值和连通域的隧道裂缝提取[J]. 西南交通大学学报,2018,53(6): 1137-1141. doi: 10.3969/j.issn.0258-2724.2018.06.007

    LUO Jia, LIU Dagang. Tunnel crack extraction based on adaptive threshold and connected domain[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1137-1141. doi: 10.3969/j.issn.0258-2724.2018.06.007
    刘烨,程国建,马微,等. 基于铸体薄片图像颜色空间与形态学梯度的岩石分类[J]. 中南大学学报(自然科学版),2016,47(7): 2375-2382.

    LIU Ye, CHENG Guojian, MA Wei, et al. Rock classification based on features form color space and morphological gradient of rock thin section image[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2375-2382.
    程国建,郭文惠,范鹏召. 基于卷积神经网络的岩石图像分类[J]. 西安石油大学学报(自然科学版),2017,32(4): 116-122. doi: 10.3969/j.issn.1673-064X.2017.04.020

    CHENG Guojian, GUO Wenhui, FAN Pengshao. Study on rock image classification based on convolution neural network[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2017, 32(4): 116-122. doi: 10.3969/j.issn.1673-064X.2017.04.020
    LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. doi: 10.1038/nature14539
    BIANCO S, BUZZELLI M, MAZZINI D, et al. Deep learning for logo recognition[J]. Neurocomputing, 2017, 245: 23-30. doi: 10.1016/j.neucom.2017.03.051
    侯进,吕志良,徐茂,等. 基于深度学习的复合神经网络机场信号检测框架[J]. 西南交通大学学报,2019,54(4): 863-869.

    HOU Jin, LYU Zhiliang, XU Mao, et al. Combined neural networks based on deep learning for signal detection in aeronautical communications[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 863-869.
    白林,姚钰,李双涛,等. 基于深度学习特征提取的岩石图像矿物成分分析[J]. 中国矿业,2018,27(7): 178-182.

    BAI Lin, YAO Yu, LI Shuangtao, et al. Mineral composition analysis of rock image based on deep learning feature extraction[J]. China Mining Magazine, 2018, 27(7): 178-182.
    徐述腾,周永章. 基于深度学习的镜下矿石矿物的智能识别实验研究[J]. 岩石学报,2018,34(11): 3244-3252.

    XU Shuteng, ZHOU Yongzhang. Artificial intelligence identification of ore minerals under microscope based on deep learning algorithm[J]. Acta Petrologica Sinica, 2018, 34(11): 3244-3252.
    IMAMVERDIYEV Y, SUKHOSTAT L. Lithological facies classification using deep convolutional neural network[J]. Journal of Petroleum Science and Engineering, 2019, 174: 216-228. doi: 10.1016/j.petrol.2018.11.023
    ZHANG Y, WANG G, LI M, et al. Automated classification analysis of geological structures based on images data and deep learning model[J]. Applied Sciences, 2018, 8(12): 2493. doi: 10.3390/app8122493
    PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. doi: 10.1109/TKDE.2009.191
    QURESHI A S, KHAN A, ZAMEER A, et al. Wind power prediction using deep neural network based meta regression and transfer learning[J]. Applied Soft Computing, 2017, 58: 742-755. doi: 10.1016/j.asoc.2017.05.031
    张野,李明超,韩帅. 基于岩石图像深度学习的岩性自动识别与分类方法[J]. 岩石学报,2018,34(2): 333-342.

    ZHANG Ye, LI Mingchao, HAN Shuai. Automatic identification and classification in lithology based on deep learning in rock images[J]. Acta Petrologica Sinica, 2018, 34(2): 333-342.
    LI N, HAO H, GU Q, et al. A transfer learning method for automatic identification of sandstone microscopic images[J]. Computers & Geosciences, 2017, 103: 111-121.
    WANG C, LI Y, FAN G, et al. Quick recognition of rock images for mobile applications[J]. Journal of Engineering Science and Technology Review, 2018, 11(4): 111-117. doi: 10.25103/jestr.114.14
    SANDLER M, HOWARD A, ZHU M, et al. MobileNet V2: inverted residuals and linear bottlenecks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
    CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800-1807.
    PAN S J, TSANG I W, KWOL J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. doi: 10.1109/TNN.2010.2091281
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
    杜恩宇,张宁,李艳荻. 基于自适应分块编码SVM的车道导向箭头多分类方法[J]. 光学学报,2018,38(10): 251-258.

    DU Enyu, ZHANG Ning, LI Yandi. Multi classification method of lane arrow markings based on support vector machines with adaptive partitioning coding[J]. Acta Optica Sinica, 2018, 38(10): 251-258.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article views(565) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return