• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
GUO Nan, CHEN Zhenghan, YANG Xiaohui, GUO Jianfeng, SUN Shuguo. Mechanical Properties and Water Holding Characteristics of Initially Isotropic Soils and Transversely Isotropic Soils[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1235-1243. doi: 10.3969/j.issn.0258-2724.20180065
Citation: WANG Jian, QIN Chunxia, YANG Ke, REN Ping, ZHENG Jie, ZHAO Yuanpeng, CHEN Guifeng. Design of Airborne Video Dehazing System for UCAV Based on HSV Transmission Weighted Correction[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 160-167, 205. doi: 10.3969/j.issn.0258-2724.20190985

Design of Airborne Video Dehazing System for UCAV Based on HSV Transmission Weighted Correction

doi: 10.3969/j.issn.0258-2724.20190985
  • Received Date: 12 Oct 2019
  • Rev Recd Date: 16 Mar 2020
  • Available Online: 08 Apr 2020
  • Publish Date: 01 Feb 2021
  • As there is image degradation when the UCAV (unmanned combat air vehicle) captures the real-time image in the haze day, a low power-consumption system is designed on the basis of the HSV (hue, saturation, value) transmission weighted correction. First, the overall design of the dehazing system is completed, which can meet the requests of a low power-consumption and real-time image dehazing. Then, according to the needs of the video acquisition dehazing system, functions are being designed, including digital video BT.656/BT.1120 interlaced and progressive processing, video control, instruction receiving processing, TS1601 video dehazing algorithm processing, H.264 video compression processing and framing, etc. Lastly, the design and implementation are focused in terms of the system dehazing algorithm, platform design, dehazing parameter processing and other functional modules. Also this system and several other methods suggested in references are used to process typical hazy images respectively, and then evaluated after employing three definition evaluation functions (variance function, average gradient function and TenenGrad function) and normalization process. The results indicate that the design of this dehazing system has such merits as low power consumption, easy implementation, and high adaptability. After processing the typical hazy images, the variance function is increased by 46.87%, 1.44% and 12.83%, the average gradient function is increased by 12.54%, 9.26% and 11.15%, that of normalization of TenenGrad function is increased by 53.19%, 3.60% and 8.82%, respectively. The overall operation time of the test algorithm is respectively increased by 4.74 times, 5.41 times and 5.46 times.

     

  • HE Kaiming, SUN Jian, TANG Xiaoou, et al. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    HE Kaiming, SUN Jian, TANG Xiaoou, et al. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. doi: 10.1109/TPAMI.2012.213
    BERMAN D, TREIBITZ T, AVIDAN S. Non-local image dehazing[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2016: 1674-1682
    MENG G F, WANG Y, DUAN J Y, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]//Proceedings of the IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2013: 617-624.
    范新南,冶舒悦,史朋飞,等. 改进大气散射模型实现的图像去雾算法[J]. 计算机辅助设计与图形学学报,2019,31(7): 1148-1155.

    FAN Xinnan, YE Shuyue, SHI Pengfei, et al. An image dehazing algorithm based on improved atmospheric scattering model[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(7): 1148-1155.
    CHEN Xuesong, LU Haihua, CHENG Kaili, et al. Sequentially refined spatial and channel-wise feature aggregation in encoder-decoder network for single image dehazing[C]//IEEE International Conference on Image Processing. [S.l.]: IEEE, 2019: 2776-2780.
    HU Haimiao, ZHANG Hongda, ZHAO Zichen, et al. Adaptive single image dehazing using joint local-global illumination adjustment[J]. IEEE Transactions on Multimedia, 2020, 22(6): 1485-1495. doi: 10.1109/TMM.2019.2944260
    ZHAO D, XU L, YAN Y, et al. Multi-scale optimal fusion model for single image dehazing[J]. Signal Processing-Image Communication, 2019, 74: 253-265. doi: 10.1016/j.image.2019.02.004
    LIU P J, HORNG S J, LIN J S, et al. Contrast in haze removal:configurable contrast enhancement model based on dark channel prior[J]. IEEE Transactions on Image Processing, 2019, 5(28): 2212-2227.
    QIN M J, XIE F Y, W Li, et al. Dehazing for multi-spectral remote sensing images based on a convolutional neural network with the residual architecture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5): 1645-1655.
    SINGH P, KOMODAKIS N. Cloud-gan: cloud removal for sentinel-2 imagery using a cyclic consistent generative adversarial networks[C]//IEEE International Geoscience and Remote Sensing Symposium. [S.l.]: IEEE, 2018: 1772-1775.
    DING J, YAN Z, WEI X, et al. Light-weight residual learning for single image dehazing[J]. Journal of Elec- tronic Imaging, 2019, 28(3): 033013.1-033013.13.
    周晓波,何魁华,周聪. 基于FPGA的图像高速去雾实时系统设计实现[J]. 电视技术,2018,42(4): 67-72.

    ZHOU Xiaobo, HE Kuijua, ZHOU Cong, et al. Design and implementation of high-speed real-time image dehazing system based on FPGA[J]. Video Engineering, 2018, 42(4): 67-72.
    张海斌. 基于Zynq实时视频图像去雾系统的设计[D]. 上海: 上海师范大学, 2018.
    匡娇娇,张瑞珏,王慧芳. 改进的暗通道去雾算法在多核DSP上的并行实现[J]. 武汉大学学报(理学版),2016,62(6): 519-524.

    KUANG Jiaojiao, ZHANG Ruijue, WANG Huifang, et al. Parallel implementaiton of improved dark channel dehazing algorithm on multicores DSP[J]. Journal of Wuhan University of Technology (Natural Science Edition), 2016, 62(6): 519-524.
    ZHANG B, WEI J. Hardware implementation for haze removal with adaptive filtering[J]. IEEE Access, 2019, 7(11): 142498-142506.
    Techwell Corporation. Data sheet of TW9912[M/OL]. [S.l.]: Techwell Corporation, 2011[2019-10-08]. http://www.techwelllinc.com.
    Semtech Corporation. Gennum corporation GS2971 data sheet[M/OL]. [S.l.]: Semtech Corporation, 2009[2019-10-08]. http://www.semtech.com.
    Surveillance Semiconductor. TS1601 3D HD video enhance processor product datasheet[M/OL]. [S.l.]: Surveillance Semiconductor, 2012[2019-10-08]. http://www.tssic.com.
    NXP Semiconductors. i.MX6 dual/6 quad multimedia applications processor reference manual[M/OL]. Freescale: NXP Semiconductors, 2012[2019-10-08]. http://www.nxp.com.cn.
    王健,辛向龙,张修飞. 基于i.MX6无人机视频码率受控的压缩系统设计[J]. 火力与指挥控制,2016,41(11): 148-152. doi: 10.3969/j.issn.1002-0640.2016.11.034

    WANG Jian, XIN Xianglong, ZHANG Xiufei. Design of the embedded video process system based on i.MX6[J]. Fire Control & Command Control, 2016, 41(11): 148-152. doi: 10.3969/j.issn.1002-0640.2016.11.034
    王健,秦春霞,杨珂,等. 无人机机载视频去雾系统设计[J]. 计算机测量与控制,2020,28(6): 135-139.

    WANG Jian, QIN Chunxia, YANG Ke, et al. Design of the airborne video demisting system for UCAV[J]. Computer Measurement & Control, 2020, 28(6): 135-139.
    耿威. 基于视频图像的雾天能见度检测方法研究与实现[D]. 南京: 东南大学, 2013.
    李雪,江旻珊. 光学显微成像系统图像清晰度评价函数的对比[J]. 光学仪器,2018,40(1): 28-38.

    LI Xue, Jiang Minshan. Comparison of sharpness function based on microscope[J]. Optical Instruments, 2018, 40(1): 28-38.
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
  • Relative Articles

    [1]WU Xinwei, HU Minghua, MAO Jizhi, WANG Yang. Collaborative Target Azimuth Perception Algorithm of Unmanned Aerial Vehicles Based on Spatial Spectrum Estimation[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 898-906, 932. doi: 10.3969/j.issn.0258-2724.20230438
    [2]CUI Yaping, YING Zhaopeng, HE Peng, ZHENG Yufeng, WU Dapeng, WANG Ruyan, CHEN Luo. Ultra-Reliable Low-Latency Communication Multi-Unmanned Aerial Vehicle Network Assisted by Intelligent Reflecting Surface in Air[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 907-916. doi: 10.3969/j.issn.0258-2724.20230288
    [3]YE Qibin, XIAO Hongyu, TIAN Chen, LIU Ming, FU Yunlin, HU Su. Self-Interference Cancellation Technology of Integrated Sensing and Communications System for Unmanned Aerial Vehicles[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 925-932. doi: 10.3969/j.issn.0258-2724.20230599
    [4]ZHOU Jingxuan, BAO Weidong, WANG Ji, ZHANG Dayu. Multi-Task Federated Learning for Unmanned Aerial Vehicle Swarms Based on Encoder-Decoder Architecture[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 933-941. doi: 10.3969/j.issn.0258-2724.20230539
    [5]QIN Qiancong, WU Guanlin, GAO Yuan, WANG Shuangshuang, LI Peng. Distributed Storage Methods for Unmanned Aerial Vehicle Clusters in Battlefield[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 942-958. doi: 10.3969/j.issn.0258-2724.20230521
    [6]ZHANG Xianyu, CHEN Yong, ZHANG Yu, YANG Hua. Joint Optimization of Resource Allocation and Deployment Location in Unmanned Aerial Vehicle-Assisted Communication[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 917-924. doi: 10.3969/j.issn.0258-2724.20230400
    [7]GUO Yang, GAO Yuan, CHENG Shaochi, WANG Xiaonan. Optimization Control Strategy for Low-Altitude and Single-Layer Unmanned Aerial Vehicle Network Coverage[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 890-897. doi: 10.3969/j.issn.0258-2724.20230535
    [8]JU Honghao, CHENG Kaijun, DENG Cailian, YAN Xuezhen, YIN Baolin, LONG Yan, FANG Xuming. A Survey on Air-Ground Networks of Unmanned Aerial Vehicles[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 877-889. doi: 10.3969/j.issn.0258-2724.20230646
    [9]WANG Jialiang, DONG Kai, GU Zhaojun, CHEN Hui, HAN Qiang. Recognition Algorithm of Safe Obstacle Avoidance Domain for UAVs Based on Maximization Idea[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1267-1276. doi: 10.3969/j.issn.0258-2724.20220262
    [10]WANG Yin, WANG Lide, QIU Ji. Real-Time Enhancement Algorithm Based on DenseNet Structure for Railroad Low-Light Environment[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1349-1357. doi: 10.3969/j.issn.0258-2724.20210199
    [11]LI Xiaolei, TANG Boming, SONG Qianghui. Probabilistic Risk Analysis of Multi-Climatic Coupling Sections of Expressway in Fog Area[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1039-1047. doi: 10.3969/j.issn.0258-2724.2018.05.022
    [12]CHEN Wei, YANG Minhua, HONG Yifeng, LI Fei. Extraction of Forest Density Based on Airborne LiDAR and Mean Shift Algorithms[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1156-1163. doi: 10.3969/j.issn.0258-2724.2015.06.026
    [13]LIU Li, WANG Yongqing. Security Analysis of Video Hashing[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 675-679. doi: 10.3969/j.issn.0258-2724.2012.04.022
    [14]HE Jing, LI Yongshu, LI Xin, TANG Min. Registration Method for Unmanned Aerial Vehicle Images Based on Point Feature and Edge Feature[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 955-961. doi: 10.3969/j.issn.0258-2724.2012.06.008
    [15]TANG Min, LI Yong-Shu, HE Jing. Relative Orientation Method of UAV Images without Ground Control Points[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 808-813. doi: 10.3969/j.issn.0258-2724.2011.05.016
    [16]SHI Gui-Fang-, Yuan- Gao-, Cheng-Jian-Chuan, . Calculation of Speed Lim it on Foggy Days[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 136-140. doi: 10. 3969/.j issn. 0258-2724. 2
    [17]LU Heng, LI Yong-Shu, LI He-Chao, HE Jing, REN Zhi-Ming. Digital Processing of Unmanned Aerial Vehicle Image and Its Application in Reconstruction of Wenchuan Earthquake-Hit Areas[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 533-538. doi: 10. 3969/ j. issn. 0258-2724.
    [18]HUANG Danping, LIAO Junbi, LIAO Shipeng. Structural Characteristics of New Airborne Mass Flowmeter[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 753-758.
    [19]ZHANGJian-qiang. Biological Properties and Spatial Pattern of Oberesfuscipennis[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 353-356.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 41.1 %FULLTEXT: 41.1 %META: 56.3 %META: 56.3 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 0.5 %其他: 0.5 %上海: 0.3 %上海: 0.3 %临汾: 0.5 %临汾: 0.5 %北京: 3.1 %北京: 3.1 %南京: 0.3 %南京: 0.3 %大连: 0.5 %大连: 0.5 %天津: 0.3 %天津: 0.3 %宣城: 0.3 %宣城: 0.3 %巴音郭楞: 0.3 %巴音郭楞: 0.3 %张家口: 2.1 %张家口: 2.1 %成都: 3.4 %成都: 3.4 %新加坡: 0.5 %新加坡: 0.5 %昆明: 0.5 %昆明: 0.5 %杭州: 0.5 %杭州: 0.5 %池州: 1.6 %池州: 1.6 %漯河: 0.3 %漯河: 0.3 %芒廷维尤: 21.7 %芒廷维尤: 21.7 %西宁: 53.4 %西宁: 53.4 %西安: 0.5 %西安: 0.5 %贵阳: 0.3 %贵阳: 0.3 %运城: 1.3 %运城: 1.3 %郑州: 0.3 %郑州: 0.3 %重庆: 1.0 %重庆: 1.0 %长沙: 0.5 %长沙: 0.5 %马鞍山: 1.0 %马鞍山: 1.0 %黄石: 0.5 %黄石: 0.5 %其他其他上海临汾北京南京大连天津宣城巴音郭楞张家口成都新加坡昆明杭州池州漯河芒廷维尤西宁西安贵阳运城郑州重庆长沙马鞍山黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(545) PDF downloads(13) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return