• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 56 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
LI Wei, SONG Weijun, DAI An, CHANG Kairong, BAI Wei. Impact Wear Properties of Hypereutectic Rail Joints Welded by Two Welding Processes[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 403-410. doi: 10.3969/j.issn.0258-2724.20190239
Citation: LI Wei, SONG Weijun, DAI An, CHANG Kairong, BAI Wei. Impact Wear Properties of Hypereutectic Rail Joints Welded by Two Welding Processes[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 403-410. doi: 10.3969/j.issn.0258-2724.20190239

Impact Wear Properties of Hypereutectic Rail Joints Welded by Two Welding Processes

doi: 10.3969/j.issn.0258-2724.20190239
  • Received Date: 02 Apr 2019
  • Rev Recd Date: 22 May 2019
  • Available Online: 16 Oct 2020
  • Publish Date: 15 Apr 2021
  • In order to study the impact damage evolution behavior and the impact performance difference of the hypereutectic rail welding joints welded by flash welding and aluminothermic welding, the impact simulation experiments of the hypereutectoid rail welding seam, the softening part of heat-affected zone and the base metal under different impact cycles were carried out by using a self-made impact wear tester. The results show that the impact wear of the rail welded joints underwent the processes of plastic deformation, pitting failure and fatigue spalling with the increasing impact cycles, and the impact damage is the result of combined action of fatigue wear and oxidation wear. Due to the differences in joint microstructure and mechanical properties caused by different welding processes, the softening part of the heat-affected zone exhibited the most severe plastic deformation, the largest wear volume and wear rate, and the worst impact resistance. The microstructure and impact resistance of the flash welding joint are better than those of the aluminothermic welding joint because of the normal heat treatment after welding. Hardness has a significant effect on the impact resistance of welded joints. The higher the hardness, the better the impact resistance and the later the fatigue spalling.

     

  • loading
  • LI Z, ZHAO X, ESVELD C, et al. An investigation into the causes of squats—correlation analysis and numerical modeling[J]. Wear, 2008, 265(9): 1349-1355.
    ABE N, FUKUI Y, NAGAFUJI T, et al. Maintenance of rail welded part by grinding its irregularities for elongation of rail service life[R]. [S.l.]: Railway Technical Research Institute, 1994.
    DUKKIPATI R V, DONG R. The dynamic effects of conventional freight car running over a dipped-joint[J]. Vehicle System Dynamics, 1999, 31(2): 95-111. doi: 10.1076/vesd.31.2.95.2095
    FRY G T, LAWRENCE F V, ROBINSON A R. A model for fatigue defect nucleation in thermite rail welds[J]. Fatigue & Fracture of Engineering Materials & Structures, 1996, 19(6): 655-668.
    CHEN Y C, KUANG J H. Contact stress variations near the insulated rail joints[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2002, 216(4): 265-273. doi: 10.1243/095440902321029217
    SEO J W, JUN H K, KWON S J, et al. Rolling contact fatigue and wear of two different rail steels under rolling–sliding contact[J]. International Journal of Fatigue, 2016, 83(2): 184-194.
    SKYTTEBOL A, JOSEFSON B L, RINGSBERG J W. Fatigue crack growth in a welded rail under the influence of residual stresses[J]. Engineering Fracture Mechanics, 2005, 72(2): 271-285. doi: 10.1016/j.engfracmech.2004.04.009
    ZHAI W M, WANG Q C, LU Z W, et al. Dynamic effects of vehicles on tracks in the case of raising train speeds[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2001, 215(2): 125-135. doi: 10.1243/0954409011531459
    WANG W J, LIU C, HE C G, et al. Investigation on impact wear and damage mechanism of railway rail weld joint and rail materials[J]. Wear, 2017, 376(4): 1938-1946.
    王艳. Ti6A14V合金及其改性层的冲击磨损行为研究[D]. 成都: 西南交通大学, 2011.
    李学敏. 冲击载荷下热喷涂涂层的塑性变形行为分析[J]. 甘肃工业大学学报,1997,23(2): 26-31.

    LI Xuemin. Behavior analysis of abrasion and plastic deformation of Cr 3C 2-25% NiCr hot-sprayed coatings under repeated impact[J]. Journal of Gansu University of Technology, 1997, 23(2): 26-31.
    蔡振兵,王璋,朱旻昊. 硬质涂层冲击、冲蚀性能的研究进展[J]. 机械工程学报,2018,53(24): 12-24.

    CAI Zhenbing, WANG Zhang, ZHU Minhao. Review on impact and erosion wear research of hard coatings[J]. Journal of Mechanical Engineering, 2018, 53(24): 12-24.
    王璋,蔡振兵,孙阳,等. 纯铁在球/面接触下的冲击微动磨损行为研究[J]. 摩擦学学报,2017,37(2): 225-232.

    WANG Zhang, CAI Zhenbing, SUN Yang, et al. Impact fretting wear behavior of pure iron under ball-to-flat contact[J]. Tribology, 2017, 37(2): 225-232.
    傅戈雁,石世宏,欧阳八生,等. 覆层零件多冲碰撞试验与失效特征[J]. 材料科学与工程学报,2004,22(2): 216-219. doi: 10.3969/j.issn.1673-2812.2004.02.016

    FU Geyan, SHI Shihong, OUYANG Basheng, et al. Repeated impact test and failure characteristic of mechanical components with cladding layer[J]. Journal of Materials Science & Engineering, 2004, 22(2): 216-219. doi: 10.3969/j.issn.1673-2812.2004.02.016
    SUH N P. An overview of the delamination theory of wear[J]. Wear, 1977, 44(1): 1-16. doi: 10.1016/0043-1648(77)90081-3
    LISKIEWICZ T, FOUVRY S, WENDLER B. Impact of variable loading conditions on fretting wear[J]. Surface and Coatings Technology, 2003, 163(5): 465-471.
    杨业元. 新型Mn-B系贝氏体钢磨球磨损及破碎机理研究[D]. 北京: 清华大学, 1995.
    杨业元,方鸿生,郑燕康,等. 碳钢的高应力冲击磨损行为研究[J]. 摩擦学学报,1996,16(2): 120-124. doi: 10.3321/j.issn:1004-0595.1996.02.004

    YANG Yeyuan, FANG Hongsheng, ZHENG Yankang, et al. High-stress impact wear behaviours of carbon steels[J]. Tribology, 1996, 16(2): 120-124. doi: 10.3321/j.issn:1004-0595.1996.02.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(648) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return