• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
YU Xiuwu, ZHOU Lixing, YU Qihao, HU Mufang, ZHANG Feng. Localization Algorithm for Mine Wireless Sensor Network Based on Rigid Cluster and Chicken Swarm Optimization[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 870-878. doi: 10.3969/j.issn.0258-2724.20180069
Citation: LI Wei, SONG Weijun, DAI An, CHANG Kairong, BAI Wei. Impact Wear Properties of Hypereutectic Rail Joints Welded by Two Welding Processes[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 403-410. doi: 10.3969/j.issn.0258-2724.20190239

Impact Wear Properties of Hypereutectic Rail Joints Welded by Two Welding Processes

doi: 10.3969/j.issn.0258-2724.20190239
  • Received Date: 02 Apr 2019
  • Rev Recd Date: 22 May 2019
  • Available Online: 16 Oct 2020
  • Publish Date: 15 Apr 2021
  • In order to study the impact damage evolution behavior and the impact performance difference of the hypereutectic rail welding joints welded by flash welding and aluminothermic welding, the impact simulation experiments of the hypereutectoid rail welding seam, the softening part of heat-affected zone and the base metal under different impact cycles were carried out by using a self-made impact wear tester. The results show that the impact wear of the rail welded joints underwent the processes of plastic deformation, pitting failure and fatigue spalling with the increasing impact cycles, and the impact damage is the result of combined action of fatigue wear and oxidation wear. Due to the differences in joint microstructure and mechanical properties caused by different welding processes, the softening part of the heat-affected zone exhibited the most severe plastic deformation, the largest wear volume and wear rate, and the worst impact resistance. The microstructure and impact resistance of the flash welding joint are better than those of the aluminothermic welding joint because of the normal heat treatment after welding. Hardness has a significant effect on the impact resistance of welded joints. The higher the hardness, the better the impact resistance and the later the fatigue spalling.

     

  • LI Z, ZHAO X, ESVELD C, et al. An investigation into the causes of squats—correlation analysis and numerical modeling[J]. Wear, 2008, 265(9): 1349-1355.
    ABE N, FUKUI Y, NAGAFUJI T, et al. Maintenance of rail welded part by grinding its irregularities for elongation of rail service life[R]. [S.l.]: Railway Technical Research Institute, 1994.
    DUKKIPATI R V, DONG R. The dynamic effects of conventional freight car running over a dipped-joint[J]. Vehicle System Dynamics, 1999, 31(2): 95-111. doi: 10.1076/vesd.31.2.95.2095
    FRY G T, LAWRENCE F V, ROBINSON A R. A model for fatigue defect nucleation in thermite rail welds[J]. Fatigue & Fracture of Engineering Materials & Structures, 1996, 19(6): 655-668.
    CHEN Y C, KUANG J H. Contact stress variations near the insulated rail joints[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2002, 216(4): 265-273. doi: 10.1243/095440902321029217
    SEO J W, JUN H K, KWON S J, et al. Rolling contact fatigue and wear of two different rail steels under rolling–sliding contact[J]. International Journal of Fatigue, 2016, 83(2): 184-194.
    SKYTTEBOL A, JOSEFSON B L, RINGSBERG J W. Fatigue crack growth in a welded rail under the influence of residual stresses[J]. Engineering Fracture Mechanics, 2005, 72(2): 271-285. doi: 10.1016/j.engfracmech.2004.04.009
    ZHAI W M, WANG Q C, LU Z W, et al. Dynamic effects of vehicles on tracks in the case of raising train speeds[J]. Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit, 2001, 215(2): 125-135. doi: 10.1243/0954409011531459
    WANG W J, LIU C, HE C G, et al. Investigation on impact wear and damage mechanism of railway rail weld joint and rail materials[J]. Wear, 2017, 376(4): 1938-1946.
    王艳. Ti6A14V合金及其改性层的冲击磨损行为研究[D]. 成都: 西南交通大学, 2011.
    李学敏. 冲击载荷下热喷涂涂层的塑性变形行为分析[J]. 甘肃工业大学学报,1997,23(2): 26-31.

    LI Xuemin. Behavior analysis of abrasion and plastic deformation of Cr 3C 2-25% NiCr hot-sprayed coatings under repeated impact[J]. Journal of Gansu University of Technology, 1997, 23(2): 26-31.
    蔡振兵,王璋,朱旻昊. 硬质涂层冲击、冲蚀性能的研究进展[J]. 机械工程学报,2018,53(24): 12-24.

    CAI Zhenbing, WANG Zhang, ZHU Minhao. Review on impact and erosion wear research of hard coatings[J]. Journal of Mechanical Engineering, 2018, 53(24): 12-24.
    王璋,蔡振兵,孙阳,等. 纯铁在球/面接触下的冲击微动磨损行为研究[J]. 摩擦学学报,2017,37(2): 225-232.

    WANG Zhang, CAI Zhenbing, SUN Yang, et al. Impact fretting wear behavior of pure iron under ball-to-flat contact[J]. Tribology, 2017, 37(2): 225-232.
    傅戈雁,石世宏,欧阳八生,等. 覆层零件多冲碰撞试验与失效特征[J]. 材料科学与工程学报,2004,22(2): 216-219. doi: 10.3969/j.issn.1673-2812.2004.02.016

    FU Geyan, SHI Shihong, OUYANG Basheng, et al. Repeated impact test and failure characteristic of mechanical components with cladding layer[J]. Journal of Materials Science & Engineering, 2004, 22(2): 216-219. doi: 10.3969/j.issn.1673-2812.2004.02.016
    SUH N P. An overview of the delamination theory of wear[J]. Wear, 1977, 44(1): 1-16. doi: 10.1016/0043-1648(77)90081-3
    LISKIEWICZ T, FOUVRY S, WENDLER B. Impact of variable loading conditions on fretting wear[J]. Surface and Coatings Technology, 2003, 163(5): 465-471.
    杨业元. 新型Mn-B系贝氏体钢磨球磨损及破碎机理研究[D]. 北京: 清华大学, 1995.
    杨业元,方鸿生,郑燕康,等. 碳钢的高应力冲击磨损行为研究[J]. 摩擦学学报,1996,16(2): 120-124. doi: 10.3321/j.issn:1004-0595.1996.02.004

    YANG Yeyuan, FANG Hongsheng, ZHENG Yankang, et al. High-stress impact wear behaviours of carbon steels[J]. Tribology, 1996, 16(2): 120-124. doi: 10.3321/j.issn:1004-0595.1996.02.004
  • Relative Articles

    [1]HUANG Gaoyong, FANG Xuming, HUANG Bo, CHEN Yu. Scheme for Optimal Energy-Efficient and Resource Allocation in OFDM-Based DF Relay Link[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 499-506. doi: 10.3969/j.issn.0258-2724.2014.03.020
    [2]ZHAO Yue, FANG Xuming, HUANG Bo, CHEN Yu. Resource Allocation Scheme Based on Load Balancing for OFDMA Two-Hop Relay Networks[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 94-101. doi: 10.3969/j.issn.0258-2724.2013.01.015
    [3]QIN Jin, NI Linglin, WANG Chengna, MIAO Lixin. Optimization Model and Algorithm for Quay Crane Scheduling in Container Terminals[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 184-192. doi: 10.3969/j.issn.0258-2724.2013.01.029
    [4]XIANG Zheng, FANG Xu-Meng, XU Feng. Energy Saving Resource Allocation Scheme in OFDMA-Based Multi-hop Cellular Networks[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 787-792. doi: 10.3969/j.issn.0258-2724.2011.05.012
    [5]WU Jianghong, WANG Xihui, TANG Yongbo, CHEN Yungui. Experimental Investigation on Periodical Temperature Field in Active Magnetic Regenerator of Rotary Magnetic Refrigerator[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 743-747,793.
    [6]MA Yongjie, JIANG Zhaoyuan, YANG Zhimin. Dynamic Location Assignment of AS/RS Based on Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2008, 21(3): 415-421.
    [7]WU Guangning, FU Longhai, WANG Hao, LI Jin. Optimal Design of Grounding Grid Based on Improved Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2007, 20(2): 169-174.
    [8]DAI Chaohua, ZHU Yunfang, CHEN Weirong. Cloud Theory-Based Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 729-732.
    [9]SHIYu-feng, SU Shi, PENG Qi-yuan. Optim ization ofM ilitary Transportation Routes Based on Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 241-243.
    [10]GAO Wei-zeng, ZHANG Bao-jian, CHEN Fu-gui, ZHU Jia-yi, . Optim ization ofCutting Path Based on Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2005, 18(4): 457-461.
    [11]FANG Lei, ZHANG Huan-chun, JING Ya-zhi. New Fuzzy Self-Tuning Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 22-25.
    [12]BUXiang-zhi, HUANG Qing, WUZhen-ye. Capacity Allocation Model for Container Logistics Revenue Management[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 94-98.
    [13]ZHANG Ge-xiang, JIN Wei-dong. Improvement of Quantum Genetic Algorithm and Its Application[J]. Journal of Southwest Jiaotong University, 2003, 16(6): 717-722.
    [14]QIUXiao-ping, TANG Yong-chuan, MENG Dan, XU Yang. Multivalue Coded Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2003, 16(2): 227-130.
    [15]WANG Xue-fang, XU Yang, SONG Zhen-ming. The Simplicity and Periodicity of Lattice Implication Algebra[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 4-7.
    [16]FENG Chun, CHEN Yong. Genetic Algorithms for Period-Double Bifurcation of Logistic Mapping[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 290-293.
    [17]ZHANG Zhi-yuan, HE Chuan. A Genetic Algorithm Based on Uniform Design Paralleled with Genetic Operation[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 536-340.
    [18]CHEN Yan-ru, PUYun. Solving Traffic Equilibrium Assignment Problem with Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 44-47.
  • Cited by

    Periodical cited type(1)

    1. 户佐安,孙燕,耿成. 考虑海铁联运的集装箱码头泊位分配优化. 重庆交通大学学报(自然科学版). 2024(01): 46-51+66 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 41.4 %FULLTEXT: 41.4 %META: 54.5 %META: 54.5 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.9 %其他: 3.9 %China: 0.2 %China: 0.2 %Piscataway: 0.2 %Piscataway: 0.2 %United States: 0.3 %United States: 0.3 %上海: 0.8 %上海: 0.8 %东莞: 0.2 %东莞: 0.2 %临汾: 0.3 %临汾: 0.3 %保定: 0.3 %保定: 0.3 %北京: 5.3 %北京: 5.3 %十堰: 0.2 %十堰: 0.2 %南昌: 0.2 %南昌: 0.2 %南通: 0.2 %南通: 0.2 %南阳: 0.2 %南阳: 0.2 %厦门: 0.2 %厦门: 0.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %大连: 1.2 %大连: 1.2 %天津: 0.3 %天津: 0.3 %威海: 1.7 %威海: 1.7 %宁德: 0.3 %宁德: 0.3 %宣城: 0.5 %宣城: 0.5 %张家口: 1.1 %张家口: 1.1 %成都: 4.7 %成都: 4.7 %扬州: 0.3 %扬州: 0.3 %攀枝花: 0.2 %攀枝花: 0.2 %杭州: 0.5 %杭州: 0.5 %江门: 0.3 %江门: 0.3 %池州: 0.6 %池州: 0.6 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %深圳: 0.9 %深圳: 0.9 %温州: 0.3 %温州: 0.3 %湛江: 0.5 %湛江: 0.5 %漯河: 0.5 %漯河: 0.5 %焦作: 0.3 %焦作: 0.3 %石家庄: 1.1 %石家庄: 1.1 %芒廷维尤: 21.8 %芒廷维尤: 21.8 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.3 %苏州: 0.3 %西宁: 44.1 %西宁: 44.1 %西安: 0.3 %西安: 0.3 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.9 %运城: 0.9 %连云港: 0.2 %连云港: 0.2 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.2 %郑州: 0.2 %长沙: 1.1 %长沙: 1.1 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.5 %青岛: 0.5 %鞍山: 0.2 %鞍山: 0.2 %其他ChinaPiscatawayUnited States上海东莞临汾保定北京十堰南昌南通南阳厦门呼和浩特哈尔滨哥伦布大连天津威海宁德宣城张家口成都扬州攀枝花杭州江门池州沈阳洛阳济南深圳温州湛江漯河焦作石家庄芒廷维尤芝加哥苏州西宁西安诺沃克贵阳运城连云港邯郸郑州长沙阳泉青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(722) PDF downloads(34) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return