• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Wei, PENG Qiyuan, WANG Qi, XIAO Xinbiao. Effect Analysis of Coupler Force onHeavy-Haul Train Safety Under Eccentric Loads[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 378-384. doi: 10.3969/j.issn.0258-2724.20200053
Citation: HUANG Xiaohong, ZHAO Yi, LI Qunzhan, LIAO Qinyu, TANG Sida, WANG Xijun. Co-Phase Traction Power Supply and Energy Storage Technology for Electrified Railway[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 856-864. doi: 10.3969/j.issn.0258-2724.20181083

Co-Phase Traction Power Supply and Energy Storage Technology for Electrified Railway

doi: 10.3969/j.issn.0258-2724.20181083
  • Received Date: 19 Dec 2018
  • Rev Recd Date: 01 Sep 2019
  • Available Online: 18 Mar 2020
  • Publish Date: 01 Aug 2020
  • In order to further optimize the economical and energy-efficient operation of electrified railway traction substations, a new scheme integrated with co-phase traction power supply and energy storage technology is proposed. Based on train diagrams and historical data, and with the intent of load peak clipping, it can achieve the real-time control on the charging or discharging of energy storage devices. As a result, the power quality problems mainly due to negative sequence can be solved. Meanwhile, the equipment capacity and operation costs are less demanded, and the regenerative braking energy can be utilized effectively. By means of the measured data of the Beijing-Shanghai high-speed railway, the proposed method shows the capability of improving negative sequence. The simulation analysis and experimental verification are performed through the flywheel energy storage device. Finally, its economic performance is also analyzed. The results show that the integration of co-phase traction power supply and energy storage can eliminate the neutral sections by 50%, and the function of eliminating negative sequence depends on the power of the energy storage device. When the energy storage device power is 10% of the large value of 95% probability for traction load power, the negative sequence limit can be reduced by 10%.

     

  • 李群湛,贺建闽. 电气化铁路的同相供电系统与对称补偿技术[J]. 电力系统自动化,1996,20(4): 9-11.

    LI Qunzhan, HE Jianmin. Electrified rail way feeding system without phase exchange and symmetrical compensation technology[J]. Automation of Electric Power Systems, 1996, 20(4): 9-11.
    LEE S H, BAE I S, JUNG C H, et al. A study on system stability improvement of distribution system with high speed electric railway using STATCOM[C]// Transmission and Distribution Conference and Exposition. Dallas: the IEEE Power & Energy Society. [S.l.]: IEEE, 2003(1): 61-67.
    LUO An, WU ChuanPing, SHEN J, et al. Railway static power conditioners for high-speed train traction power supply systems using three-phase V/V transformers[J]. IEEE Transactions on Power Electronics, 2011, 26(10): 2844. doi: 10.1109/TPEL.2011.2128888
    王跃,杨君,王兆安,等. 电气化铁路用混合电力滤波器的研究[J]. 中国电机工程学报,2003,23(7): 23-27. doi: 10.3321/j.issn:0258-8013.2003.07.005

    WANG Yue, YANG Jun, WANG Zhaoan, et al. Study on hybrid power filter used in electrified railway system[J]. Proceedings of the CSEE, 2003, 23(7): 23-27. doi: 10.3321/j.issn:0258-8013.2003.07.005
    李群湛,张进思,贺威俊. 适于重载电力牵引的新型供电系统的研究[J]. 铁道学报,1988,10(4): 23-31. doi: 10.3321/j.issn:1001-8360.1988.04.003

    LI Qunzhan, ZHANG Jinsi, HE Weijun. Study of a new power supply system for heavy haul electric traction[J]. Journal of the China Railway Society, 1988, 10(4): 23-31. doi: 10.3321/j.issn:1001-8360.1988.04.003
    HE Xiaoqiong, SHU Zeliang, PENG Xu, et al. Advanced cophase traction power supply system based on three-phase to single-phase converter[J]. IEEE Transactions On Power Electronics, 2014, 29(10): 5323-5333. doi: 10.1109/TPEL.2013.2292612
    DAI Ningyi, WONG Manchung, LAO Kengweng, et al. Modelling and control of a railway power conditioner in co-phase traction power system under partial compensation[J]. IET Power Electron, 2014, 7(5): 1044-1054. doi: 10.1049/iet-pel.2013.0396
    黄小红,李群湛. 基于模块化多电平和组合式变压器的高速铁路同相牵引供电系统[J]. 高电压技术,2016,42(1): 97-104.

    HUANG Xiaohong, LI Qunzhan. Co-phase traction power supply system of high speed railway based on modular multilevel converter and combined connection transformer[J]. High Voltage Engineering, 2016, 42(1): 97-104.
    张秀峰,连级三,高仕斌. 基于三相变四相变压器的新型同相牵引供电系统[J]. 中国电机工程学报,2006,26(15): 19-23. doi: 10.3321/j.issn:0258-8013.2006.15.004

    ZHANG Xiufeng, LIAN Jisan, GAO Shibin. A new cophase traction power supply system based on three-phase to four-phase transformer[J]. Proceedings of the CSEE, 2006, 26(15): 19-23. doi: 10.3321/j.issn:0258-8013.2006.15.004
    李群湛. 论新一代牵引供电系统及其关键技术[J]. 西南交通大学学报,2014,49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001

    LI Qunzhan. On new generation traction power supply system and its key technologies for electrified railways[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001
    国家电网公司“电网新技术前景研究”项目咨询组. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化,2013,37(1): 3-8. doi: 10.7500/AEPS201209150

    Consulting Group of State Grid Corporation of China to Prospects of New technologies in power systems. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1): 3-8. doi: 10.7500/AEPS201209150
    王承民,孙伟卿,衣涛,等. 智能电网中储能技术应用规划及其效益评估方法综述[J]. 中国电机工程学报,2013,33(7): 33-41.

    WANG Chengmin, SUN Weiqing, YI Tao, et al. Review on energy storage application planning and benefit evaluation methods in smart grid[J]. Proceedings of the CSEE, 2013, 33(7): 33-41.
    BOICEA V A. Energy storage technologies:the past and the present[J]. Proceedings of IEEE, 2014, 102(11): 1777-1794. doi: 10.1109/JPROC.2014.2359545
    DAMIANO A, GATTO G, MARONGIU Ignazio, et al. Real-time control strategy of energy storage systems for renewable energy sources exploitation[J]. IEEE Transactions on Sustainable Energy, 2014, 5(2): 567-576. doi: 10.1109/TSTE.2013.2273400
    VAZQUEZ S, LUKIC S M, GALVAN E, et al. Energy storage systems for transport and grid applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 3881-3895. doi: 10.1109/TIE.2010.2076414
    丁涛,牟晨璐,别朝红,等. 能源互联网及其优化运行研究现状综述[J]. 中国电机工程学报,2018,38(15): 4418-4428.

    DING Tao, MU Chenlu, BIE Zhaohong, et al. Review of energy internet and its operation[J]. Proceedings of the CSEE, 2018, 38(15): 4418-4428.
    徐国栋,程浩忠,马紫峰,等. 用于缓解电网调峰压力的储能系统规划方法综述[J]. 电力自动化设备,2017,37(8): 3-11.

    XU Guodong, CHENG Haozhong, MA Zifeng, et al. Overview of ESS planning methods for alleviating peak-shaving pressure of grid[J]. Electric Power Automation Equipment, 2017, 37(8): 3-11.
    胡娟,杨水丽,侯朝勇,等. 规模化储能技术典型示范应用的现状分析与启示[J]. 电网技术,2015,39(4): 879-885.

    HU Juan, YANG Shuili, HOU Chaoyong, et al. Present condition analysis on typical demonstration application of large-scale energy storage technology and its enlightenment[J]. Power System Technology, 2015, 39(4): 879-885.
    李群湛, 贺建闽. 牵引供电系统分析[M]. 3版. 成都: 西南交通大学出版社, 2012: 129-158, 183-203.
  • Relative Articles

    [1]GAO Shibin, LUO Jiaming, CHEN Weirong, HU Haitao, TU Chunming, CHEN Yanbo, XIAO Fan, WANG Feikuan. Rail Transit “Network-Source-Storage-Vehicle” Collaborative Energy Supply Technology System[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 959-979, 989. doi: 10.3969/j.issn.0258-2724.20220210
    [2]CHEN Weirong, WANG Xiaoyu, HAN Ying, ZANG Zhi, LI Qi, SHEN Wenjie, XU Chengpeng. Coordinated Control Method of Photovoltaic and Battery System Connected to Traction Power Supply System Based on Railway Power Conditioner[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 1-10. doi: 10.3969/j.issn.0258-2724.20211058
    [3]LIU Jizong, ZHANG Zutao, WANG Hao, KONG Lingji, YI Minyi, ZHU Zhongyin. Braking Energy Utilization in Urban Rail Transit: Status and Prospects[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1322-1345. doi: 10.3969/j.issn.0258-2724.20220676
    [4]ZHANG Weiyu, LI Kai, YANG Xin. Multi-Objective Optimization for Flywheel Motors Based on Parameter Priority Division[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 922-932. doi: 10.3969/j.issn.0258-2724.20220845
    [5]KANG Dejian, YI Dong, WANG Hui. Operation Status of Tree Continuous Co-phase Power Supply System of Heavy-Haul Railways[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1240-1247. doi: 10.3969/j.issn.0258-2724.20220723
    [6]LIU Yuanli, LI Qunzhan. Day-Ahead Optimal Scheduling of Co-phase Traction Power Supply System with Photovoltaic and Hybrid Energy Storage[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 30-39. doi: 10.3969/j.issn.0258-2724.20200534
    [7]ZHANG Liyan, JIA Ying, HAN Dushuo, LEI Wanliang. Energy Management and Capacity Allocation Scheme for Co-phase Traction Power Supply and Energy Storage System in Electrified Railways[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 22-29. doi: 10.3969/j.issn.0258-2724.20210247
    [8]WU Donghua, FENG Chengcheng, YU Jin. Contactless Power Supply Technology for Maglev Trains[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 522-530. doi: 10.3969/j.issn.0258-2724.20210893
    [9]ZHANG Weiyu, ZHANG Lindong, YU Yanjun. Review on Key Technologies of Stable Operation for Magnetic Suspension Support-Flywheel System[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 627-639. doi: 10.3969/j.issn.0258-2724.20210745
    [10]CHEN Minwu, TIAN Hang, SONG Yalin, CHEN Ling. Reliability Optimization of Co-phase Power Supply Device Based on Frequency Conversion Control Strategy[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 9-17. doi: 10.3969/j.issn.0258-2724.20180668
    [11]WANG Pingxiang. Study on Impact on Negative Sequence of Single Three-Phase Combined Co-Phase Power Supply System[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1110-1116. doi: 10.3969/j.issn.0258-2724.2018.06.003
    [12]LIU Hang, LI Qunzhan, GUO Kai. Maintenance Decision Modeling and Optimization Based on Markov Process for Combined Co-Phase Power Supply Equipment[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 355-362. doi: 10.3969/j.issn.0258-2724.2017.02.020
    [13]HUANG Xiaohong, LI Qunzhan, YANG Naiqi. Topology and Matching Capacity of Direct-Connected Converter for Co-phase Traction Power Supply Substation[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 379-388. doi: 10.3969/j.issn.0258-2724.2017.02.023
    [14]CHEN Minwu, LUO Jie, XIE Shaofeng, XIA Yankun, JIANG Wenbing. Modelling and Analysis of Combined Co-phase Traction Power Supply System Based on Vx Connection Traction Transformer[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 886-893. doi: 10.3969/j.issn.0258-2724.2016.05.010
    [15]YUAN Yanping, XIANG Bo, CAO Xiaoling, ZHANG Nan, SUN Liangliang. Research Status and Development on Latent Energy Storage Technology of Building[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 585-598. doi: 10.3969/j.issn.0258-2724.2016.03.017
    [16]XIE Shaofeng, LI Qunzhan. Design of Balance Traction Transformer Capacity in Co-phase Traction Power Supply System[J]. Journal of Southwest Jiaotong University, 2014, 27(4): 576-581. doi: 10.3969/j.issn.0258-2724.2014.04.003
    [17]ZHAO Yanling, LI Qunzhan. Multi-agent-Based Coordination Control of Continuous Cophase Traction Power Supply System[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 806-813. doi: 10.3969/j.issn.0258-2724.2012.05.012
    [18]ZHANG Xiufeng, XIEJie. Features and Minimum Capacity of Active Compensation in Cophase Power Supply[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 445-450. doi: 10.3969/j.issn.0258-2724.2011.03.015
    [19]ZHANG Xiufeng, LÜ, Xiaoqin, LIAN Jisan. Optimal Compensation Models in Cophase Power Supply System[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 841-847.
    [20]LI Xueqin, PENG Qiyuan, FENG Wei, XIE Xiaosong. Model and PSO-Based Solution of Two-Dimensional Unbalanced Assignment Problem[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 535-539.
  • Cited by

    Periodical cited type(12)

    1. 王翰林,黄小红,李昊洋,彭友,任桃,李群湛. 含分布式光伏接入的三相牵引供电系统电压协调控制方法. 高电压技术. 2024(04): 1645-1654 .
    2. 高仕斌,罗嘉明,陈维荣,胡海涛,涂春鸣,陈艳波,肖凡,王飞宽. 轨道交通“网-源-储-车”协同供能技术体系. 西南交通大学学报. 2024(05): 959-979+989 . 本站查看
    3. 李群湛,彭友,黄小红,王翰林,任桃. 电气化铁路贯通供电系统穿越功率的治理措施. 西南交通大学学报. 2024(06): 1245-1255 . 本站查看
    4. 罗嘉明,高仕斌,韦晓广,臧天磊,张敬凯. 基于模糊Petri网的“网–源–储–车”动态阈值能量管理策略研究. 工程科学与技术. 2023(01): 48-58 .
    5. 张丽艳,贾瑛,韩笃硕,雷万良. 电气化铁路同相储能供电系统能量管理及容量配置策略. 西南交通大学学报. 2023(01): 22-29 . 本站查看
    6. 刘元立,李群湛. 含光伏和混合储能的同相牵引供电系统日前优化调度. 西南交通大学学报. 2023(01): 30-39 . 本站查看
    7. 吕顺凯,张志文. 高速铁路再生制动能量存储利用方案研究. 电气化铁道. 2023(05): 1-8+13 .
    8. 夏焰坤,任俊杰. 基于组合式变换器的川藏铁路贯通供电方案电气性能仿真分析. 四川电力技术. 2022(02): 82-86 .
    9. 吕顺凯. 交流电气化铁路相邻变电所间再生制动能量复合利用技术. 中国铁路. 2022(07): 66-75 .
    10. 罗嘉明,韦晓广,高仕斌,黄涛,李多. 高速铁路储能系统容量配置与能量管理技术综述与展望. 中国电机工程学报. 2022(19): 7028-7051 .
    11. 龚志恒,张翼扬,朱楚扬,赵鼎威,刘湘. 计及新能源接入的柔性牵引供电系统区间最优潮流研究. 电工技术. 2022(24): 48-52+57 .
    12. 徐元成. 基于数据挖掘技术的电气化铁路电能质量控制研究. 电气应用. 2021(06): 77-81 .

    Other cited types(22)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 38.1 %FULLTEXT: 38.1 %META: 57.8 %META: 57.8 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.1 %其他: 6.1 %其他: 0.3 %其他: 0.3 %Knoxville: 0.4 %Knoxville: 0.4 %[]: 0.3 %[]: 0.3 %上海: 1.5 %上海: 1.5 %东莞: 0.8 %东莞: 0.8 %临汾: 0.3 %临汾: 0.3 %仙桃: 0.3 %仙桃: 0.3 %北京: 3.2 %北京: 3.2 %十堰: 0.3 %十堰: 0.3 %南京: 1.5 %南京: 1.5 %台北: 0.3 %台北: 0.3 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.6 %嘉兴: 0.6 %大连: 0.6 %大连: 0.6 %天津: 0.8 %天津: 0.8 %太原: 0.1 %太原: 0.1 %宣城: 1.0 %宣城: 1.0 %常德: 0.1 %常德: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 3.5 %张家口: 3.5 %成都: 5.7 %成都: 5.7 %扬州: 0.3 %扬州: 0.3 %昆明: 0.6 %昆明: 0.6 %杭州: 1.1 %杭州: 1.1 %武汉: 0.1 %武汉: 0.1 %池州: 0.6 %池州: 0.6 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.3 %济南: 0.3 %深圳: 0.4 %深圳: 0.4 %温州: 0.3 %温州: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 1.2 %漯河: 1.2 %烟台: 0.3 %烟台: 0.3 %焦作: 0.3 %焦作: 0.3 %石家庄: 0.7 %石家庄: 0.7 %福州: 0.1 %福州: 0.1 %米兰: 0.1 %米兰: 0.1 %芒廷维尤: 22.2 %芒廷维尤: 22.2 %芝加哥: 0.3 %芝加哥: 0.3 %葵涌: 0.1 %葵涌: 0.1 %西宁: 35.8 %西宁: 35.8 %西安: 0.4 %西安: 0.4 %贵阳: 0.1 %贵阳: 0.1 %赤峰: 0.3 %赤峰: 0.3 %运城: 0.7 %运城: 0.7 %郑州: 0.1 %郑州: 0.1 %重庆: 0.4 %重庆: 0.4 %金华: 0.1 %金华: 0.1 %长沙: 3.2 %长沙: 3.2 %青岛: 0.1 %青岛: 0.1 %其他其他Knoxville[]上海东莞临汾仙桃北京十堰南京台北台州合肥哥伦布嘉兴大连天津太原宣城常德广州张家口成都扬州昆明杭州武汉池州洛阳济南深圳温州湖州漯河烟台焦作石家庄福州米兰芒廷维尤芝加哥葵涌西宁西安贵阳赤峰运城郑州重庆金华长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(796) PDF downloads(34) Cited by(34)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return