• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
YANG Shiwu, CHEN Bingjun, CHEN Haikang, CUI Yong, TANG Qiankun. Suppression Solutions to Transient Traction Current Interference in Neutral Zone for Track Circuit[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1332-1341. doi: 10.3969/j.issn.0258-2724.20180692
Citation: YANG Shiwu, CHEN Bingjun, CHEN Haikang, CUI Yong, TANG Qiankun. Suppression Solutions to Transient Traction Current Interference in Neutral Zone for Track Circuit[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1332-1341. doi: 10.3969/j.issn.0258-2724.20180692

Suppression Solutions to Transient Traction Current Interference in Neutral Zone for Track Circuit

doi: 10.3969/j.issn.0258-2724.20180692
  • Received Date: 05 Sep 2018
  • Rev Recd Date: 04 Mar 2019
  • Available Online: 15 Mar 2019
  • Publish Date: 01 Dec 2019
  • When an electric locomotive or an EMU (electric multiple unit) passes neutral zone in a track section, transient traction current is very likely to cause harmonic interference to track circuit, which may produce failure. To guarantee stable performance of track circuit under the influence of harmonic interference, the suppression methods of transient traction current are studied. Based on the European standards, the windowed FFT (fast Fourier transformation) method is adopted to design the procedure of harmonic data processing, and the analysis results of field test data are utilized to illustrate the interference mechanism for track circuit. Then, taking an example with a 1 700 Hz signal carrier and 1 750 Hz harmonic frequency, the solution and simulation results of FPGA (field-programmable gate array)-based FIR (finite impulse response) digital filter are briefly discussed from the point of direct suppression to harmonic interference. Due to the tiny difference between signal frequency and interference harmonic, the solution has to run at the cost of long response time and high order. Lastly, based on the current source feature of harmonic interference and project feasibility, the collaborative optimization scheme for the transmitter and attenuator of track circuit is proposed. Namely, by optimizing the transmitting level and attenuator step, the suppression to harmonic inference can be improved with an increase of 6 dB in signal-to-interference ratio while the operation states of track circuit are ensured including its clearance, occupancy and cab signaling.

     

  • loading
  • YANG Shiwu, TIAN Jianzhao, XU Hao, et al. Analysis on harmonic current and its impact on track circuit in high speed railway[C]//2016 IEEE International Conference on Intelligent Rail Transportation. Birmingham: IEEE, 2016: 315-321.
    YANG Shiwu, ZHU Bei, CLIVE Roberts, et al. Feature-based solution to harmonics interference on track circuit in electrified heavy haul railway[C]//2013 IEEE International Conference on Intelligent Rail Transportation. Beijing: IEEE, 2013: 297-301.
    李彩霞,杨世武,张炜. 轨道电路不平衡牵引电流干扰测试及分析[J]. 铁道通信信号,2009,45(7): 25-26. doi: 10.3969/j.issn.1000-7458.2009.07.012

    LI Caixia, YANG Shiwu, ZHANG Wei. Test and analysis of non-balance electric current interfere in track circuit[J]. Railway Signalling & Communication, 2009, 45(7): 25-26. doi: 10.3969/j.issn.1000-7458.2009.07.012
    LI Jianqing, YANG Shiwu, REN Guoqiao. Research on anti-interference from heavy traction current to the signaling system of Datong-Qinhuangdao railway line[C]//Proceedings of 9th International Heavy Haul Conference. Shanghai: China Railway Publishing House, 2009: 734-748.
    British Standard Institution. Railway applications-compatibility between rolling stock and train detection systems-part2: compatibility with track circuits: CLC/TS50238-2.2015[S]. London: British Standards Institution, 2015.
    中华人民共和国铁道部. 铁道信号电气设备电磁兼容性试验及其限值: TB/T 3073[S]. 北京: 中国铁道出版社, 2003.
    ŽUPAN A, TEKLIC A T, FILIPOVIC-GRCIC B. Modeling of 25 kV electric railway system for power quality studies[C]//IEEE EUROCON Conference. Zagreb: IEEE, 2013: 844-849.
    FATEN O, BEN AMMAR F. Compensation of harmonic disturbances in the tunisian SAHEL railway supply system[C]//1st International Conference on Electrical Engineering and Software Applications. Hammamet: IEEE, 2013: 574-578.
    JIAO Jinghai, WEN Yinghong, LI Meng, et al. Research on vehicle onboard measurement system of traction harmonic current for analyzing interference on track circuit[C]//6th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies. Shanghai: IEEE, 2015: 475-478.
    王梓丞,郭进,张亚东,等. 基于FDTD接口方法的ZPW-2000轨道电路暂态分析[J]. 西南交通大学学报,2019,54(1): 196-201, 218. doi: 10.3969/j.issn.1673-4440.2016.04.024

    WANG Zicheng, GUO Jin, ZHANG Yadong, et al. Transient analysis of ZPW-2000 track circuit based on FDTD interface method[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 196-201, 218. doi: 10.3969/j.issn.1673-4440.2016.04.024
    许童羽,程浩忠,周玉宏,等. 基于LabVIEW的配电网谐波在线监测与分析系统[J]. 电力系统保护与控制,2008,36(1): 63-66. doi: 10.3969/j.issn.1674-3415.2008.01.014

    XU Tongyu, CHENG Haozhong, ZHOU Yuhong, et al. A LabVIEW-based system for distribution network harmonics monitoring and analysing[J]. Power System Protection and Control, 2008, 36(1): 63-66. doi: 10.3969/j.issn.1674-3415.2008.01.014
    英超. 基于加窗插值FFT的电力系统谐波检测算法研究[D]. 锦州: 辽宁工业大学, 2015.
    PHAM V L, WONG K P. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms[J]. IEEE Proceedings-Generation,Transmission and Distribution, 1999, 146(3): 249-254. doi: 10.1049/ip-gtd:19990316
    毛广智,解学书. 无绝缘轨道电路系统的图形建模[J]. 计算机工程,2004,30(15): 146-148. doi: 10.3969/j.issn.1000-3428.2004.15.058

    MAO Guangzhi, XIE Xueshu. Graphic modeling of jointless track circuit[J]. Computer Engineering, 2004, 30(15): 146-148. doi: 10.3969/j.issn.1000-3428.2004.15.058
    RUDEZ U, MIHALIC R. Sympathetic inrush current phenomenon with loaded transformers[J]. Electric Power Systems Research, 2016, 138: 3-10. doi: 10.1016/j.jpgr.2015.12.011
    何垚. 高速铁路车网谐波特性研究[D]. 成都: 西南交通大学, 2013.
    HOBBS I. High speed power[J]. Power Engineering, 2007, 21(2): 32-35. doi: 10.1049/pe:20070204
    杨少兵,吴命利. 基于实测数据的高速动车组谐波分布特性与概率模型研究[J]. 铁道学报,2010,32(3): 33-38. doi: 10.3969/j.issn.1001-8360.2010.03.006

    YANG Shaobing. WU Mingli. Study on harmonic distribution characteristics and probability model of high speed emu based on measured data[J]. Journal of the China Railway Society, 2010, 32(3): 33-38. doi: 10.3969/j.issn.1001-8360.2010.03.006
    王纪坤. ZPW-2000R移频自动闭塞系统测试系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
    张海洋,许海平,方程,等. 基于谐振数字滤波器的直驱式永磁同步电机转矩脉动抑制方法[J]. 中国电机工程学报,2018,38(4): 1222-1231,1299.

    ZHANG Haiyang, XU Haiping, FANG Cheng, et al. Torque ripple suppression method of direct-drive permanent magnet synchronous motor based on resonant digital filter[J]. Proceedings of the CSEE, 2018, 38(4): 1222-1231,1299.
    杨世武. 铁路信号电磁兼容技术[M]. 北京: 中国铁道出版社, 2010: 80-86.
    中华人民共和国铁道部. 铁路信号维护规则技术标准I[M]. 2版. 北京: 中国铁道出版社, 2008: 92-93
    刘家良. 移频轨道电路邻线干扰与迂回电路研究[D]. 北京: 北京交通大学, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article views(497) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return