• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 55 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
WEN Yang, CAI Junqing, CHEN Mingjun. Mechanical Behavior of Intercalation Plate Joints of Concrete-Filled Steel Tubular Wind Turbine Tower[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 332-342. doi: 10.3969/j.issn.0258-2724.20180273
Citation: WEN Yang, CAI Junqing, CHEN Mingjun. Mechanical Behavior of Intercalation Plate Joints of Concrete-Filled Steel Tubular Wind Turbine Tower[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 332-342. doi: 10.3969/j.issn.0258-2724.20180273

Mechanical Behavior of Intercalation Plate Joints of Concrete-Filled Steel Tubular Wind Turbine Tower

doi: 10.3969/j.issn.0258-2724.20180273
  • Received Date: 22 May 2018
  • Rev Recd Date: 11 Mar 2019
  • Available Online: 21 Mar 2019
  • Publish Date: 01 Apr 2020
  • In order to understand mechanical behavior of intercalation plate joints of concrete-filled steel tubular wind turbine tower, static test of four split-type nodes was carried out, and finite element nonlinear analysis of parameters expansion was carried out by ABAQUS. Effect force distribution of the gusset plate and equivalent stress distribution in cone were analyzed by change the thickness of the gusset plate and the height of the spherical column. The results show that failure modes include buckling failure mode, inclusion slip failure mode, and spherical column shear failure mode, which depend on the thickness of the gusset plate, the holding force of the inclusion, and the height of the spherical column. The gusset plate is the weak part of the node, which varied with the thickness of the gusset plate and the height of the spherical column, the high stress zone concentrate at the intersection between lower part of the gusset plate and the spherical column. If brace buckling failure do not occur, the spherical column at the same height, the thickness of the gusset plate is no more than 12 mm (n ≤ 12 mm), the bearing capacity of the node increases with the gusset plate thickness, when the gusset plate thickness is larger than 12 mm (n > 12 mm), with the increase of the gusset plate thickness, the increase of the node bearing capacity slows down significantly. when the gusset plate thickness is the same, the sphere cylinder height is no more than 90 mm (h ≤ 90 mm), the bearing capacity of the node obviously increases with the increase of the ball column height, when the sphere cylinder height is larger than 90 mm (h > 90 mm), the bearing capacity of the node slows down with the increase of the sphere cylinder height obviously. It suggests that the gusset plate thickness is no more than 12 mm (n ≤ 12 mm), the ball column height is no more than 90 mm (h ≤ 90 mm) is more reasonable for such nodes in actual engineering design.

     

  • loading
  • 王长路,王伟功,张立勇. 中国风电产业发展分析[J]. 重庆大学学报(自然科学版),2015,38(1): 148-154.

    WANG Changlu, WANG Weigong, ZHANG Liyong. The analysis of China wind power industry[J]. Journal of Chongqing University (Natural Science Edition), 2015, 38(1): 148-154.
    刘晓峰,俞黎萍. 风力机混凝土塔架最小成本优化设计[J]. 太阳能学报,2017,38(3): 691-698.

    LIU Xiaofeng, YU Liping. Minimum cost design of the concrete wind turbine tower[J]. Acta Energiae Solaris Sinica, 2017, 38(3): 691-698.
    刘香,王敏,李建. 格构式钢管混凝土风力发电塔架的受力分析[J]. 武汉理工大学学报,2010,32(9): 175-177,265. doi: 10.3963/j.issn.1671-4431.2010.09.041

    LIU Xiang, WANG Min, LI Jian. The force analysis of concrete-filled steel tube of lattice wind tower turbine[J]. Journal of Wuhan University of Technology, 2010, 32(9): 175-177,265. doi: 10.3963/j.issn.1671-4431.2010.09.041
    李斌,文昊天,高春彦. 钢管混凝土格构式新型风力发电机塔架风振响应[J]. 噪声与振动控制,2018,38(4): 144-148. doi: 10.3969/j.issn.1006-1355.2018.04.028

    LI Bin, WEN Haotian, GAO Chunyan. Wind vibration response of lattice type wind turbine towers made of concrete-filled steel-tubes[J]. Noise and Vibration Control, 2018, 38(4): 144-148. doi: 10.3969/j.issn.1006-1355.2018.04.028
    单蕾. 风力机塔架结构选型与受力性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
    李斌, 杨晓云, 高春彦. 风力发电机锥台型塔筒和格构式塔架的抗震性能试验研究与对比分析[J]. 建筑结构学报, 2013, 34(增刊1): 161-166.

    LI Bin, YANG Xiaoyun, GAO Chunyan. Experimental research and comparative analysis on seismic performance of wind turbine frustum tower drum and latticed tower[J]. Journal of Building Structures, 2013, 34(S1): 161-166.
    高春彦,李斌,史治宇. 钢管混凝土风电塔架节点非线性有限元分析[J]. 建筑结构学报,2013,34(1): 140-146.

    GAO Chunyan, LI Bin, SHI Zhiyu. Nonlinear finiteelement analysis of concrete-filled steel tubular wind turbine tower joints[J]. Journal of Building Structures, 2013, 34(1): 140-146.
    闻洋,孟春才,刘书坛. 格构式钢管混凝土风电塔架双拼节点性能研究[J]. 西南交通大学学报,2016,51(6): 1113-1120. doi: 10.3969/j.issn.0258-2724.2016.06.010

    WEN Yang, MENG Chuncai, LIU Shutan. Performance of double-limb splice joints of latticed concrete-filled steel tubular wind turbine tower[J]. Journal of Southwest Jiaotong University, 2016, 51(6): 1113-1120. doi: 10.3969/j.issn.0258-2724.2016.06.010
    高春彦,史治宇,牛丽华. 圆钢管混凝土K型焊接管板节点试验研究和有限元分析[J]. 中南大学学报(自然科学版),2017,48(3): 769-778.

    GAO Chunyan, SHI Zhiyu, NIU Lihua. Experimental study and finite element analysis of concrete-filled circular steel tubular K-type welded tube-gusset joints[J]. Journal of Central South University (Science and Technology), 2017, 48(3): 769-778.
    赵必大,刘成清,余丛迪,等. 圆钢管-横向板相贯连接节点轴向刚度研究[J]. 西南交通大学学报,2017,52(5): 977-984. doi: 10.3969/j.issn.0258-2724.2017.05.019

    ZHAO Bida, LIU Chengqing, YU Congdi, et al. Axial rigidity of unstiffened transverse plate-to-circular hollow section (CHS) joints[J]. Journal of Southwest Jiaotong University, 2017, 52(5): 977-984. doi: 10.3969/j.issn.0258-2724.2017.05.019
    赵必大,刘成清,章圣冶,等. Y型圆钢管相贯节点轴向刚度计算模型[J]. 西南交通大学学报,2015,50(5): 872-878. doi: 10.3969/j.issn.0258-2724.2015.05.016

    ZHAO Bida, LIU Chengqing, ZHANG Shengye, et al. Calculation model for axial rigidity of CHS Y-Type joints[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 872-878. doi: 10.3969/j.issn.0258-2724.2015.05.016
    闻洋,屈琳琳,管丽佩. 格构式钢管混凝土风电塔架KT型节点受力性能试验研究[J]. 建筑结构学报,2015,36(9): 110-116.

    WEN Yang, QU Linlin, GUAN Lipei. Experimental study on mechanical behavior of KT-type joints of latticed concrete-filled steel tubular wind turbine tower[J]. Journal of Building Structures, 2015, 36(9): 110-116.
    宋谦益. 圆钢管混凝土-钢管K形节点的力学性能研究[D]. 北京: 清华大学, 2010.
    陈娟, 孙伟健, 聂建国. 钢管混凝土KK形相贯节点空间效应研究[J]. 建筑结构学报, 2017, 38(增刊1): 402-408.

    CHEN Juan, SUN Weijian, NIE Jianguo. Study on spatial effect of concretefilled steel tubular KKjoints[J]. Journal of Building Structures, 2017, 38(S1): 402-408.
    陈娟,聂建国,周成野. 钢管混凝土T形相贯节点应力集中系数研究[J]. 建筑结构学报,2018,39(3): 149-157.

    CHEN Juan, NIE Jianguo, ZHOU Chengye. Study on stress concentration factor of concrete-filled steel tubular T-joints[J]. Journal of Building Structures, 2018, 39(3): 149-157.
    高春彦. 新型风力发电高塔节点的失效机理和极限承载力研究[D]. 南京: 南京航空航天大学, 2018.
    赵必大, 李克, 刘成清, 等. 支主管夹角对X形圆钢管节点轴向性能的影响[J/OL]. 西南交通大学学报, [2019-12-22]. http://kns.cnki.net/kcms/detail/51.1277.U.20190903.1538.004.html.

    ZHAO Bida, LIU Ke, LIU Chengqing, et al. Effect of brace-to-chord angle on the performance of unstiffened CHS X-joints under brace axial force[[J/OL]. Journal of Southwest Jiaotong University, [2019-12-22]. http://kns.cnki.net/kcms/detail/51.1277.U.20190903.1538.004.html.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views(729) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return