• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LIU Yang, QIU Zhongping, MENG Tao, GONG Zhengjun, WANG Dongmei, FAN Chao. Biotransformation of Bioethanol from Lignocellulose by High Yield Cellulase-Producing Aspergillus[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 225-230. doi: 10.3969/j.issn.0258-2724.20180477
Citation: WANG Qisheng, GAO Boqing, WU Hui. Bubble Model Based Grid Generation and Grid Size Control over Free-Form Surface[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 350-356. doi: 10.3969/j.issn.0258-2724.20180210

Bubble Model Based Grid Generation and Grid Size Control over Free-Form Surface

doi: 10.3969/j.issn.0258-2724.20180210
  • Received Date: 21 Mar 2018
  • Rev Recd Date: 25 Jun 2018
  • Available Online: 08 Jul 2018
  • Publish Date: 01 Apr 2020
  • To generate triangular grids with regular shapes and adaptive sizes over free-form surfaces, an automatic grid generation method is presented on the basis of a bubble dynamic model. Grid nodes were first decorated on the discretized surface according to certain rule, and were regarded as elastic bubbles. The inter-bubble forces and the forces from surface adsorption were introduced. The motion control equations of bubbles were established. Then, the equilibrium state of the bubble system was acquired by the numerical simulation algorithm. Finally, the centers of balanced bubbles were connected into a triangular grid by an extended Delaunay method. In the bubble model, the size of a bubble is determined by the relative radius function. And the control of the grid size is realized by adjusting the bubble size. Through the relative radius function factoring in the distance from each bubble center to selected points or curves, the curvature of reference curves or the surface and so on, the method can generate triangular grids with edges adapted to the surface features. Six cases have demonstrated that the grids generated by the proposed method have regular shapes and adaptive sizes, with their shape quality indexes all higher than 0.97. The method provides the convenience for the design of grid structures.

     

  • 崔昌禹,崔国勇,涂桂刚,等. 基于B样条的自由曲面结构形态创构方法研究[J]. 建筑结构学报,2017,38(3): 164-172.

    CUI Changyu, CUI Guoyong, TU Guigang, et al. Structure morphogenesis of free-form surfaces based on B-spline[J]. Journal of Building Structures, 2017, 38(3): 164-172.
    董磊. 单层自由曲面空间网格结构新型节点开发及风工况下结构稳定承载力分析[D]. 南京: 东南大学, 2015.
    石伟志. 自由曲面结构力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    李承铭,卢旦. 自由曲面单层网格的智能布局设计研究[J]. 土木工程学报,2011(3): 1-7.

    LI Chengming, LU Dan. Study of intelligent layout design of single-layer lattice shell of free form surface[J]. China Civil Engineering Journal, 2011(3): 1-7.
    SU L, ZHU S, XIAO N, et al. An automatic grid generation approach over free-form surface for architectural design[J]. Journal of Central South University, 2014, 21(6): 2444-2453. doi: 10.1007/s11771-014-2198-7
    危大结,舒赣平. 自由曲面网格的划分与优化方法[J]. 建筑结构,2013,43(19): 48-53.

    WEI Dajie, SHU Ganping. Mesh generation and optimization method for free-form surface grid[J]. Building Structure, 2013, 43(19): 48-53.
    潘炜,吴慧,李铁瑞,等. 基于曲面展开的自由曲面网格划分[J]. 浙江大学学报(工学版),2016,50(10): 1973-1979.

    PAN Wei, WU Hui, LI Tierui, et al. Grid generation on free-form surface based on surface flattening[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(10): 1973-1979.
    PERSSON P O, STRANG G. A simple mesh generator in MATLAB[J]. Siam Review, 2004, 46(2): 2004.
    SHIMADA K, GOSSARD D C. Bubble mesh: automated tri-angular meshing of non-manifold geometry by sphere packing[C]//Proceedings of the Third ACM Symposium on Solid Modeling and Application. New York: ACM Press, 1995: 409-419
    SHIMADA K, GOSSARD D C. Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis[J]. Computer Aided Geometric Design, 1998, 15(3): 199-222. doi: 10.1016/S0167-8396(97)00037-X
    ZHELEZNYAKOVA A L. Molecular dynamics-based triangulation algorithm of free-form parametric surfaces for computer-aided engineering[J]. Computer Physics Communications, 2015, 190: 1-14. doi: 10.1016/j.cpc.2014.12.018
    ZHELEZNYAKOVA A L, SURZHIKOV S T. Molecular dynamics-based unstructured grid generation method for aerodynamic applications[J]. Computer Physics Communications, 2013, 184(12): 2711-2727. doi: 10.1016/j.cpc.2013.07.013
    OWEN S. A survey of unstructured mesh generation technology[C]//7th International Meshing Roundtable. Berlin: Springer-Verlag, 1998: 239-267.
    王奇胜,高博青,李铁瑞,等. 基于气泡吸附的自由曲面三角形网格生成方法[J]. 华中科技大学学报(自然科学版),2018,46(3): 98-102.

    WANG Qisheng, GAO Boqing, LI Tierui, et al. Automatic grid generation on free-form surface based on bubble-like adsorption[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(3): 98-102.
    GROOT R D, WARREN P B. Dissipative particle dynamics:Bridging the gap between atomistic and mesoscopic simulation[J]. The Journal of Chemical Physics, 1997, 107(11): 4423-4435. doi: 10.1063/1.474784
    ZHANG H, SMIRNOV A V. Node placement for triangular mesh generation by Monte Carlo simulation[J]. International Journal for numerical methods in engineering, 2005, 64(7): 973-989. doi: 10.1002/nme.1402
    DAVID A. Qualitative measures for initial meshes[J]. International Journal for Numerical Methods in Engineering, 2000, 47(47): 887-906.
  • Relative Articles

    [1]FENG Jun, LAI Bing, ZHANG Shengliang, WANG Duo, LIU Yuan. Laboratory Pull-Out Test Study of Basalt Fiber Reinforced Polymer Bolt for Strengthening Mixed Soil[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1193-1200. doi: 10.3969/j.issn.0258-2724.20200874
    [2]DUAN Jingbo, XU Buqing. Aeroelastic Instability of Variable-Stiffness Panels with Curvilinear Fibers in Subsonic Flow[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 797-804. doi: 10.3969/j.issn.0258-2724.20200277
    [3]LI Fuhai, HE Xiaoyunfeng, WU Haonan, JIANG Yilin, WANG Yibin, HU Dinghan. Experimental Study on Deformation Behavior of Polypropylene Fiber Reinforced Concrete Beams[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 853-863. doi: 10.3969/j.issn.0258-2724.20190959
    [4]SHU Gang, ZHANG Qinghua, HUANG Yun, BU Yizhi. Micromechanical Analysis of Steel Fiber Corrosion in Ultra-high Performance Concrete[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1268-1276. doi: 10.3969/j.issn.0258-2724.20170453
    [5]HUANG Junjie, SHI Xiaona, SU Qian, WANG Wei, WANG Wubin. Stress Characteristics and Failure Mechanisms of Plain Concrete Piles of Composite Foundation under Embankment[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 945-952, 988. doi: 10.3969/j.issn.0258-2724.20180251
    [6]WANG Hailong, LUO Yuejing, PENG Guangyu, SUN Xiaoyan, YING Qiming. Effect of Admixtures on Tensile Behavior of Fiber Reinforced Cementitious Composites[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 61-68. doi: 10.3969/j.issn.0258-2724.2017.01.009
    [7]YAN Xiangcheng, WENG Xingzhong, KOU Yanan, LIANG Lei, ZHANG Guangxian. Bending Mechanical Properties of Cement Concrete with Fiber Grid Reinforcement[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 394-399. doi: 10.3969/j.issn.0258-2724.2012.03.007
    [8]GU Xingyu, SHEN Xin, LU Jiaying. Experimental Investigation on Tensile Mechanical Properties of BFRP Bars[J]. Journal of Southwest Jiaotong University, 2010, 23(6): 914-919. doi: 10.3969/j.issn.0258-2724.2010
    [9]ZHANG Sufeng, 2, LIU Wen, ZHANG Meiyun. Effect of Aramid Fibre and Pulp Morphologies on Properties of Sheet[J]. Journal of Southwest Jiaotong University, 2010, 23(5): 805-810. doi: 10. 3969/ j. issn. 0258-2724.
    [10]CHUge Ping, QIANG Shi-Zhong, HOU Su-Wei. Experimental Investigation of Wedge-Anchor Parameters for CFRP Tendons[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 514-520. doi: 10. 3969/ j. issn. 0258-2724.
    [11]WANG Tinghui, SONG Shuncheng, WANG Mingchao, SUN Zhijie, ZHANG Zuoguang. Dynamic Tensile Properties of High Strength Fiber Bundles[J]. Journal of Southwest Jiaotong University, 2008, 21(5): 638-642.
    [12]ZHANG Jianqiang, WANG Yankun, LI Yong. Selection and Fermentation of Mixed Cellulolytic Strains[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 549-554.
    [13]ZHANG Jianqiang, LI Yalan, LI Yong. Investigation into Screening,Identifying and Solid-State Fermentation of Cellulolytic Strains[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 442-446.
    [14]LIU Dan, YANG Li-zhong. Risk Prediction of Water Inflow into Extra-long Qinling Tunnel with Environmental Isotopes[J]. Journal of Southwest Jiaotong University, 2003, 16(6): 629-632.
    [15]LI Sui-yan, LI Qing-yi. The Purification of Alkaline Phosphatase fromEisenia Foetide Sarigng[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 597-600.
    [16]KANGGuo一zheng, CAOqing. ThermalResidualStressesinAlignedShortFiber ReinforcedMetalMatrixComPosites[J]. Journal of Southwest Jiaotong University, 2001, 14(4): 387-391.
    [17]KANG Guo-zheng, GAO Qing. The Effect of Fiber Aspect Ratio on the Mechanical Behavior of Aligned Short Fiber Composites[J]. Journal of Southwest Jiaotong University, 2000, 13(2): 188-191.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0702.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 44.9 %FULLTEXT: 44.9 %META: 52.1 %META: 52.1 %PDF: 3.0 %PDF: 3.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.7 %其他: 3.7 %上海: 0.7 %上海: 0.7 %临汾: 0.5 %临汾: 0.5 %北京: 4.2 %北京: 4.2 %十堰: 0.2 %十堰: 0.2 %南京: 2.0 %南京: 2.0 %唐山: 0.5 %唐山: 0.5 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %宣城: 0.5 %宣城: 0.5 %张家口: 3.0 %张家口: 3.0 %成都: 1.5 %成都: 1.5 %扬州: 0.5 %扬州: 0.5 %杭州: 3.2 %杭州: 3.2 %池州: 1.0 %池州: 1.0 %洛阳: 0.2 %洛阳: 0.2 %漯河: 0.7 %漯河: 0.7 %石家庄: 2.2 %石家庄: 2.2 %芒廷维尤: 20.7 %芒廷维尤: 20.7 %芜湖: 0.5 %芜湖: 0.5 %苏州: 0.2 %苏州: 0.2 %西宁: 47.4 %西宁: 47.4 %贵阳: 0.7 %贵阳: 0.7 %运城: 1.2 %运城: 1.2 %郑州: 1.5 %郑州: 1.5 %金华: 0.2 %金华: 0.2 %长沙: 1.0 %长沙: 1.0 %青岛: 0.2 %青岛: 0.2 %其他上海临汾北京十堰南京唐山嘉兴大连天津宣城张家口成都扬州杭州池州洛阳漯河石家庄芒廷维尤芜湖苏州西宁贵阳运城郑州金华长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(642) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return