• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
XU Jing, LI Shiyao, WANG Bintai, LI Jing, JIANG Xiugen. Analytical Finite Element for Timoshenko Beams[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 492-498. doi: 10.3969/j.issn.0258-2724.20180176
Citation: XU Jing, LI Shiyao, WANG Bintai, LI Jing, JIANG Xiugen. Analytical Finite Element for Timoshenko Beams[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 492-498. doi: 10.3969/j.issn.0258-2724.20180176

Analytical Finite Element for Timoshenko Beams

doi: 10.3969/j.issn.0258-2724.20180176
  • Received Date: 13 Mar 2018
  • Rev Recd Date: 19 Jul 2018
  • Available Online: 21 Dec 2018
  • Publish Date: 01 Jun 2019
  • To improve the calculation accuracy and efficiency of structural force and deformation of deep beams, the deflection control equation of a deep beam was built by Timoshenko beam theory, and analytical displacement shape functions for deflection, section flexural angle and shear angle of deep beam were constructed. Then, potential energy functions for the beam model were established using the potential energy principle; analytical element formulations for beams and the total element stiffness matrix were obtained via the variational principle of potential energy stationary value. Finally, the proposed analytical finite element method was applied to calculate the end deflections of a cantilever deep beam and a simply supported deep beam; and the calculation results were compared with those by theoretical solution and interpolation polynomial method. The results show that the solutions of end deflection and rotation obtained from the proposed analytical element by one element number is in accordance with the theoretical solutions; the maximum relative error between the results calculated from interpolation shape function method and the theoretical solution is 19.785%. To verify the influence of shear deformation on the deflection, the proposed element was also compared with the Euler beam element. The comparison results show that, for cantilever beams subjected to distributed load, the relative error between the results calculated from the Euler beam theory and the proposed element derived by the Timoshenko beam theory is 50%. For simply supported beams subjected to a concentrated bending moment at the end, the relative error is 10.769%. It is proved that the proposed analytical beam element can satisfy the high accuracy and efficiency requirement and avoid shear locking problems.

     

  • 古雅琦,王海龙,杨怀宇. 一种大变形几何非线性Euler-Bernoulli梁单元[J]. 工程力学,2016,30(6): 11-15.

    GU Yaqi, WANG Hailong, YANG Huaiyu. A lagre deformation geometric nonlinear Euler-Bernoulli beam element[J]. Engineering Mechanics, 2016, 30(6): 11-15.
    夏拥军,陆念力. 梁杆结构稳定性分析的高精度Euler-Bernoulli梁单元[J]. 沈阳建筑大学学报(自然科学版),2006,22(3): 362-366.

    XIA Yongjun, LU Nianli. A new Euler-Bernoulli beam element with high accuracy for the stability analysis of beam structures[J]. Journal of Shenyang Jianzhu University (Natural Science), 2006, 22(3): 362-366.
    夏拥军,缪谦. Euler-Bernoulli梁单元的完整二阶位移场[J]. 中国工程机械学报,2011,9(4): 416-420.

    XIA Yongjun, MIAO Qian. Complete second-order displacement field of Euler-Bernoulli beam element[J]. Chinese Journal of Construction Machinery, 2011, 9(4): 416-420.
    SCHNABL S, SAJE M, TURK G, et al. Locking-free two-layer Timoshenko beam element with interlayer slip[J]. Finite Elements in Analysis and Design, 2007, 43(9): 705-714.
    SCHNABL S, SAJE M, TURK G, et al. Analytical solution of two-layer beam taking into account interlayer slip and shear deformation[J]. Journal of Structural Engineering, 2007, 133(6): 886-894.
    OWEN D R J, HINTON E. Finite elements in plasticity-theory and practice[M]. New York: Swansea Pineridge Press, 1980: 1-50
    TIMOSHENKO S P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1921, 41(6): 744-746.
    HUTCHINSON J R. Shear coefficients for Timoshenko beam theory[J]. Transactions-American Society of Mechanical Engineers Journal of Applied Mechanics, 2001, 68(1): 87-92.
    王乐,王亮. 一种新的计算Timoshenko梁截面剪切系数的方法[J]. 应用数学和力学,2013,34(7): 756-763.

    WANG Le, WANG Liang. A new method of obtaining Timoshenko’s shear coefficients[J]. Applied Mathematics and Mechanics, 2013, 34(7): 756-763.
    CLOUGH R W. The finite element method in plane stress analysis[C]//Proceeding of 2nd ASCE Conference on Electronic Computation. Pittsburg: [s.n.], 1960: 112-125
    SHEIKH A H. New concept to include shear deformation in a curved beam element[J]. Journal of Structural Engineering,ASCE, 2002, 128(3): 406-410.
    ORAL S. Anisoparametric interpolation in hybrid-stress Timoshenko beam element[J]. Journal of Structural Engineering,ASCE, 1991, 117(4): 1070-1078.
    李潇,王宏志,李世萍,等. 解析型Winkler弹性地基梁单元构造[J]. 工程力学,2015,32(3): 66-72.

    LI Xiao, WANG Hongzhi, LI Shiping, et al. Element for beam on Winkler elastic foundation based on analytical trial functions[J]. Engineering Mechanics, 2015, 32(3): 66-72.
    李世萍. 解析型弹性地基梁单元构造[D]. 北京: 中国农业大学, 2013
    罗双. 解析型Pasternak弹性地基梁单元构造[D]. 北京: 中国农业大学, 2016
    李静. 解析型双参数弹性地基Timoshenko梁单元构造[D]. 北京: 中国农业大学, 2017
    龙驭球, 包世华. 结构力学教程(Ⅱ)[M]. 北京: 高等教育出版社, 2006: 2-8, 56-60
    李世尧. 解析型Timoshenko梁单元构造[D]. 北京: 中国农业大学, 2017
  • Relative Articles

    [1]ZHANG Junxing, XU Jing, WANG Hongzhi. Non-Linear Analysis of Three-Segment Stiffness Compressive Bar Based on Direct Stiffness Method[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1173-1178, 1186. doi: 10.3969/j.issn.0258-2724.2018.06.012
    [2]GUO Shi-Wei-, Lin-Jian-Hui, . M ixed FEM ofB-SplineW avelet on Interval for Beam Structures[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 17-22. doi: 10. 3969/.j issn. 0258-2724. 2
    [3]LIANG Shangming, YAN Xijiang, WANG Xianzhou. Coupled Finite Element Thermal-Mechanical Analysis of Gravity Support System of International Thermonuclear Experimental Reactor[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 738-742.
    [4]WANG Jialin. Bandwidth Optimization Algorithm of Finite Element Models at Level of Degree of Freedom[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 186-189.
    [5]LIU Zenghua, LI Fu, HUANG Yunhua. Finite Element Analysis of Vertical Stiffness of Air Spring System[J]. Journal of Southwest Jiaotong University, 2006, 19(6): 700-704.
    [6]YANG Rong-shan. Finite Element Analysis of Stress in Rail Joint[J]. Journal of Southwest Jiaotong University, 2003, 16(3): 314-317.
    [7]XUZhi-sheng, ZHAI Wan-ming, WANG Kai-yun. Analysis of Vehicle-Track Coupling Vibration Based on Timoshenko Beam Model[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 22-27.
    [8]YANG Jie, CHEN Qiu. A Monte-Carlo Stochastic FEM Based on Conjugate Gradients Method[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 647-650.
    [9]LIUAi-rong, PAN Yi-su, ZHOUBen-kuan. Finite Element Analysis for Shape Memory Alloys[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 157-151.
    [10]SONG Shun-cheng, TAN Duo-wang. Nonlinear Finite Element Analysis of Hypervelocity Impact[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 565-561.
    [11]PAN Yi-su, CHEN Da-peng. Finite Element Analysis of Nonlinear Fracture for Piezoelectric Ceramics[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 451-456.
  • Cited by

    Periodical cited type(9)

    1. 周新建,李飞,冯后东,罗建新,李子珺. 轨道不平顺系数对跨座式单轨的车桥耦合振动响应影响. 机械设计. 2025(04): 101-108 .
    2. 魏巍,丁维高,谢进. 带仿生躯干的被动行走机器人步态特性. 西南交通大学学报. 2024(02): 477-484 . 本站查看
    3. 周新建,李飞,冯后东,罗建新,李子珺. 桥梁跨度对跨座式单轨车桥耦合振动的影响分析. 噪声与振动控制. 2024(04): 1-7 .
    4. 张英琦,周如传,黄国科,李晓彬. 基于梁模型的无轴承尾桨等效建模及模态分析. 直升机技术. 2024(03): 11-17 .
    5. 周新建,罗建新,冯后东,李飞,李子珺,万云峰. 曲线半径对跨座式单轨车桥耦合系统振动影响. 噪声与振动控制. 2023(04): 27-33+67 .
    6. 刘耀鹏,邢佳乐,白伦华,李帼昌,丁乐扬. 薄壁截面剪切系数计算的平面薄壁单元法. 建筑钢结构进展. 2023(10): 82-89 .
    7. 卓英鹏,王刚,齐朝晖,张健. 节点参数含应变的空间几何非线性样条梁单元. 应用数学和力学. 2022(09): 987-1003 .
    8. 王朝振,刘银涛,孙建鹏,周鹏,孙文武,张家驹. 微分法在有限元分析中的应用. 城市道桥与防洪. 2021(01): 172-175+18-19 .
    9. 肖乾,高雪山,周新建,李子珺. 曲线超高率对跨座式单轨车桥耦合系统振动影响. 噪声与振动控制. 2021(06): 6-11 .

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article views(1158) PDF downloads(163) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return