• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
YU Xiuwu, ZHOU Lixing, YU Qihao, HU Mufang, ZHANG Feng. Localization Algorithm for Mine Wireless Sensor Network Based on Rigid Cluster and Chicken Swarm Optimization[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 870-878. doi: 10.3969/j.issn.0258-2724.20180069
Citation: YU Xiuwu, ZHOU Lixing, YU Qihao, HU Mufang, ZHANG Feng. Localization Algorithm for Mine Wireless Sensor Network Based on Rigid Cluster and Chicken Swarm Optimization[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 870-878. doi: 10.3969/j.issn.0258-2724.20180069

Localization Algorithm for Mine Wireless Sensor Network Based on Rigid Cluster and Chicken Swarm Optimization

doi: 10.3969/j.issn.0258-2724.20180069
  • Received Date: 23 Jan 2018
  • Rev Recd Date: 10 Aug 2018
  • Available Online: 05 Sep 2018
  • Publish Date: 01 Aug 2019
  • In order to adapt to the restrain resulting in environment factor of mine to localization of wireless sensor network, a novel localization algorithm based on rigid cluster and chicken swarm optimization (RCCSO) is proposed. First, the clusters are set up centring on the uniformly distributed anchor nodes, expand the clusters based on rigid theory and get several clusters which are all globally rigid. Second of it, optimize the best relative position of the nodes in the same cluster by chicken swarm optimization, and get the solution sets of relative position. Then, centring on the anchor nodes, all the solution ratate for some different angle, and optimal the best solution set of ratation angles by chicken swarm optimization, and get the globally position of all the unknown nodes. Finally, Simulation comparison demonstrated that the accuracy of the new localization algorithm RCCSO is more precise than the MDS-MAP algorithm and DALSA algorithm.

     

  • loading
  • HUANG Linqi, LI Xibing, DONG Longjun, et al. Relocation method of microseismic source in deep mines[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2988-2996. doi: 10.1016/S1003-6326(16)64429-1
    邓平,伍小梅. 一种基于粒子滤波的WSN自适应定位算法[J]. 西南交通大学学报,2014,49(2): 323-329. doi: 10.3969/j.issn.0258-2724.2014.02.021

    DENG Ping, WU Xiaomei. An adaptive localization algorithm based on particle filter for wireless sensor networks[J]. Journal of Southwest Jiaotong University, 2014, 49(2): 323-329. doi: 10.3969/j.issn.0258-2724.2014.02.021
    BOUBRIMA A, BECHKIT W, RIVANO H. Optimal WSN deployment models for air pollution monitoring[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 2723-2735. doi: 10.1109/TWC.2017.2658601
    MARQUES B, RICARDO M. Energy-efficient node selection in application-driven WSN[J]. Wireless Networks, 2017, 23(3): 889-918. doi: 10.1007/s11276-016-1194-2
    HAN S, GONG Z, MENG W, et al. Automatic precision control positioning for wireless sensor network[J]. Sensors Journal IEEE, 2016, 16(7): 2140-2150. doi: 10.1109/JSEN.2015.2506166
    蒋伊琳,张芳园. 基于自然选择粒子群的时钟同步算法[J]. 西南交通大学学报,2017,52(3): 593-599. doi: 10.3969/j.issn.0258-2724.2017.03.021

    JIANG Yilin, ZHANG Fangyuan. Clock synchronization algorithm based on particle swarm optimization with natural selection[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 593-599. doi: 10.3969/j.issn.0258-2724.2017.03.021
    VANHEELl F, VERHAEVERT J, LAERMANS E, et al. Pseudo-3D RSSI-based WSN localization algorithm using linear regression[J]. Wireless Communications & Mobile Computing, 2015, 15(9): 1342-1354.
    裴忠民,李贻斌,徐硕. 大规模无线传感器网络快速定位算法[J]. 中国矿业大学学报,2013,42(2): 314-319.

    PEI Zhongmin, LI Yibin, XU Shuo. A fast localization algorithm for large-scale wireless sensor networks[J]. Journal of China University of Mining & Technology, 2013, 42(2): 314-319.
    夏娜,王诗良,郑榕,等. 基于骨架提取的水下传感器网络刚性定位判别研究[J]. 计算机学报,2015,38(3): 589-601.

    XIA Na, WANG Shiliang, ZHENG Rong, et al. Study on localizablity judgement in underwater sensor networks based on skeleton extrication and rigid theory[J]. Chinese Journal of Computers, 2015, 38(3): 589-601.
    BOUKERCHE A, OLIVEIRA H A B F, AKAMURA E F, et al. A Voronoi approach for scalable and robust DV-Hop localization system for sensor networks[C]// International Conference on Computer Communications and Networks. [S.L.]: IEEE, 2017: 497-502
    ZHAGN R, ZHOU F, RAN L, et al. A fuzzy graph theory based redundant node deployment algorithm for multi-hop WSN[J]. Chinese High Technology Letters, 2011, 21(3): 223-227.
    尚俊娜,刘春菊,岳克强,等. 基于改进双系统协同进化算法的无线传感器网络节点定位[J]. 计算机应用,2015,35(6): 1514-1518.

    SHANG Junna, LIU Chunju, YUE Keqiang, et. al. WSN nodes localization based on improved bi-system cooperative optimization algorithm[J]. Journal of Computer Application, 2015, 35(6): 1514-1518.
    HERNANDEZ O O S, COTA-RUIZ J, GONZALEZ-LANDAETA R, et al. A distributed adaptive local searching algorithm for wireless sensor network localization[J]. International Journal of Distributed Sensor Networks, 2016, 12(10): 1-9.
    SHAYOKH M A, SHIN S Y. Bio inspired distributed WSN localization based on chicken swarm optimization[J]. Wireless Personal Communications, 2017, 97(4): 5691-5706. doi: 10.1007/s11277-017-4803-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(430) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return