• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 6
Dec.  2018
Turn off MathJax
Article Contents
LI Huaixian, CHENG Wenming, LIU Fang, ZHANG Mingkui, YANG Chunmei. Lower Limb Muscle Co-Contraction and Coupling Synergy in Exoskeleton Assistance for Load Carriage Walking[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1286-1294. doi: 10.3969/j.issn.0258-2724.2018.06.026
Citation: LI Huaixian, CHENG Wenming, LIU Fang, ZHANG Mingkui, YANG Chunmei. Lower Limb Muscle Co-Contraction and Coupling Synergy in Exoskeleton Assistance for Load Carriage Walking[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1286-1294. doi: 10.3969/j.issn.0258-2724.2018.06.026

Lower Limb Muscle Co-Contraction and Coupling Synergy in Exoskeleton Assistance for Load Carriage Walking

doi: 10.3969/j.issn.0258-2724.2018.06.026
  • Received Date: 11 Jun 2018
  • Publish Date: 01 Dec 2018
  • Human-robot interaction performance was evaluated, and better exoskeleton structures and human-robot adaptability control strategies were explored. The muscle activity, paired-muscle contraction index, and synergy coupling of the muscles of nine healthy male subjects carrying loads and walking with and without the exoskeleton prototype were investigated through evaluation of the conducted experiment. The results show that muscle activity significantly increased compared with normal load carrying, especially for the planter flexor muscle peronaeus longus. Some design defects were observed in the foot/ankle area of the current exoskeleton prototype, and the paired-muscle mean co-contraction index decreased. However, the co-contraction index range was greater than in normal load carriage. The module complexities were similar for both load carriage conditions, with total variances of 95% and 96%. Three modules could describe nearly 95% of the variance in electromyography data during normal load carriage. However, the same modules could only describe 83%–91% of the variance in muscle activity while walking with the exoskeleton. These results show that the muscle activities in healthy subjects will not be modulated by the central control strategy in the process of adaption to the assistance of the exoskeleton. The plot shape of the synergy weights and the muscle activation are significantly different from the normal gait. Hence, better human-robot interface designs in the ankle/foot area and human- robot interaction strategies referenced from the kinds of flexible but principle neuromuscular recruitment mechanisms, would improve the usability and the human-robot interaction performance of the exoskeleton.

     

  • loading
  • KIGUCHI K, HAYASHI Y. An EMG-based control for an upper-limb power-assist exoskeleton robot[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics, 2012, 42(4): 1064-1071
    FARRIS, R J, QUINTERO, H A, GOLDFARB M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(6): 652-659 doi: 10.1109/TNSRE.2011.2163083
    RESTREPO-ZAPATA J, GALLEGO-DUQUE C, MARQUEZ-VILORIA D, et al. Two-degree adjustable exoskeleton for assistance of the human arm using a mechanical system of fast assembly and upgradability[J]. International Journal on Smart Sensing & Intelligent Systems, 2017, 10(3): 491-505
    KAWAMOTO H, SANKAI Y. Power assist method based on Phase Sequence and muscle force condition for HAL[J]. Advanced Robotics, 2005, 19(7): 717-734 doi: 10.1163/1568553054455103
    KAZEROONI H, STEGER R, HUANG L. Hybrid control of the berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138 doi: 10.1109/TMECH.2006.871087
    RASHEDI E, KIM S, NUSSBAUM M A, et al. Ergonomic evaluation of a wearable assistive device for overhead work[J]. Ergonomics, 2014, 57(12): 1864-1874 doi: 10.1080/00140139.2014.952682
    STEELE K M, JACKSON R W, SHUMAN B R, et al. Muscle recruitment and coordination with an ankle exoskeleton[J]. Journal of Biomechanics, 2017, 59: 50-58 doi: 10.1016/j.jbiomech.2017.05.010
    FLEISCHER C, HOMMEL G. A human-exoskeleton interface utilizing electromyography[J]. IEEE Transactions on Robotics, 2008, 24(4): 872-882 doi: 10.1109/TRO.2008.926860
    RANGANATHAN R, KRISHNAN C, DHAHER Y Y, et al. Learning new gait patterns:exploratory muscle activity during motor learning is not predicted by motor modules[J]. Journal of Biomechanics, 2016, 49(5): 718-725 doi: 10.1016/j.jbiomech.2016.02.006
    GRAZI L, CREA S, PARRI A, et al. Gastrocnemius myoelectric control of a robotic hip exoskeleton can reduce the user’s lower-limb muscle activities at push off[J]. Frontiers in Neuroscience, 2018, 12: 1-11 doi: 10.3389/fnins.2018.00001
    SYLOS-LABINI F, LA S V, D’AVELLA A, et al. EMG patterns during assisted walking in the exoskeleton[J]. Frontiers in Human Neuroscience, 2014, 8: 423
    YIN Y H, FAN Y J, XU L D. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 542-549 doi: 10.1109/TITB.2011.2178034
    IVANENKO Y P, POPPELE R E, LACQUANITI F. Motor control programs and walking[J]. Neuroscientist, 2006, 12(4): 339-348 doi: 10.1177/1073858406287987
    KAWAMOTO H, TAAL S, NINISS H, et al. Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia[C]//Annual International Conference of the Ieee Engineering in Medicine and Biology Society. Chicago: IEEE, 2010: 462-466
    PETERSON M D, RHEA M R, SEN A, et al. Resistance exercise for muscular strength in older adults:a meta-analysis[J]. Ageing Research Reviews, 2010, 9(3): 226-237 doi: 10.1016/j.arr.2010.03.004
    CAPPELLINI G, IVANENKO Y P, POPPELE R E, et al. Motor patterns in human walking and running[J]. Journal of Neurophysiology, 2006, 95(6): 3426-3437 doi: 10.1152/jn.00081.2006
    刘放,程文明,邬钱涌. 基于缓冲结构设计的携行式外骨骼研究[J]. 机械设计与研究,2012,28(5): 37-40 doi: 10.3969/j.issn.1006-2343.2012.05.010

    LIU Fang, CHENG Wenming, WU Qianyong. Research of portable exoskeleton based on buffer design[J]. Machine Design and Research, 2012, 28(5): 37-40 doi: 10.3969/j.issn.1006-2343.2012.05.010
    CLARK D J, TING L H, ZAJAC F E, et al. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke[J]. Journal of Neurophysiology, 2010, 103(2): 844-857 doi: 10.1152/jn.00825.2009
    LUNDBERG H J, ROJAS I L, FOUCHER K C, et al. Comparison of antagonist muscle activity during walking between total knee replacement and control subjects using unnormalized electromyography[J]. Journal of Arthroplasty, 2015, 31(6): 1331-1339
    HURD W J, SNYDERMACKLER L. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait[J]. Journal of Orthopaedic Research, 2007, 25(10): 1369-1377 doi: 10.1002/jor.v25:10
    SOUISSI H, ZORY R, BREDIN J, et al. Comparison of methodologies to assess muscle co-contraction during gait[J]. Journal of Biomechanics, 2017, 57: 141-145 doi: 10.1016/j.jbiomech.2017.03.029
    HEIDEN T L, LLOYD D G, ACKLAND T R. Knee joint kinematics,kinetics and muscle co-contraction in knee osteoarthritis patient gait[J]. Clinical Biomechanics, 2009, 24(10): 833-841 doi: 10.1016/j.clinbiomech.2009.08.005
    SAITO A, TOMITA A, ANDO R, et al. Muscle synergies are consistent across level and uphill treadmill running[J]. Scientific Reports, 2018, 8(1): 5979
    谢平,李欣欣,杨春华,等. 基于表面肌电非负矩阵分解与一致性的肌间协同-耦合关系研究[J]. 中国生物医学工程学报,2017,36(2): 150-157 doi: 10.3969/j.issn.0258-8021.2017.02.004

    XIE Ping, LI Xinxin, YANG Chunhua. Research on the intermuscular synergy and coupling analysis based on surface EMG on negative matrix factorization-coherence[J]. Chinese Journal of Biomedical Engineering Machine Design and Research, 2017, 36(2): 150-157 doi: 10.3969/j.issn.0258-8021.2017.02.004
    CHVATAL S A, TING L H. Common muscle synergies for balance and walking[J]. Frontiers in Computational Neuroscience, 2013, 7(5): 48
    SAWERS A, ALLEN J L, TING L H. Long-term training modifies the modular structure and organization of walking balance control[J]. Journal of Neurophysiology, 2015, 114(6): 3359-3373 doi: 10.1152/jn.00758.2015
    KOLLER J R, JACOBS D A, FERRIS D P, et al. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton[J]. Journal of Neuroengineering & Rehabilitation, 2015, 12(1): 1-14
    YOUNG A J, FOSS J, GANNON H, et al. Influence of power delivery timing on the energetics and biomechanics of humans wearing a hip exoskeleton[J]. Frontiers in Bioengineering & Biotechnology, 2017, 5: 1-11
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(387) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return