Citation: | LI Huaixian, CHENG Wenming, LIU Fang, ZHANG Mingkui, YANG Chunmei. Lower Limb Muscle Co-Contraction and Coupling Synergy in Exoskeleton Assistance for Load Carriage Walking[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1286-1294. doi: 10.3969/j.issn.0258-2724.2018.06.026 |
KIGUCHI K, HAYASHI Y. An EMG-based control for an upper-limb power-assist exoskeleton robot[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics, 2012, 42(4): 1064-1071
|
FARRIS, R J, QUINTERO, H A, GOLDFARB M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(6): 652-659 doi: 10.1109/TNSRE.2011.2163083
|
RESTREPO-ZAPATA J, GALLEGO-DUQUE C, MARQUEZ-VILORIA D, et al. Two-degree adjustable exoskeleton for assistance of the human arm using a mechanical system of fast assembly and upgradability[J]. International Journal on Smart Sensing & Intelligent Systems, 2017, 10(3): 491-505
|
KAWAMOTO H, SANKAI Y. Power assist method based on Phase Sequence and muscle force condition for HAL[J]. Advanced Robotics, 2005, 19(7): 717-734 doi: 10.1163/1568553054455103
|
KAZEROONI H, STEGER R, HUANG L. Hybrid control of the berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2): 128-138 doi: 10.1109/TMECH.2006.871087
|
RASHEDI E, KIM S, NUSSBAUM M A, et al. Ergonomic evaluation of a wearable assistive device for overhead work[J]. Ergonomics, 2014, 57(12): 1864-1874 doi: 10.1080/00140139.2014.952682
|
STEELE K M, JACKSON R W, SHUMAN B R, et al. Muscle recruitment and coordination with an ankle exoskeleton[J]. Journal of Biomechanics, 2017, 59: 50-58 doi: 10.1016/j.jbiomech.2017.05.010
|
FLEISCHER C, HOMMEL G. A human-exoskeleton interface utilizing electromyography[J]. IEEE Transactions on Robotics, 2008, 24(4): 872-882 doi: 10.1109/TRO.2008.926860
|
RANGANATHAN R, KRISHNAN C, DHAHER Y Y, et al. Learning new gait patterns:exploratory muscle activity during motor learning is not predicted by motor modules[J]. Journal of Biomechanics, 2016, 49(5): 718-725 doi: 10.1016/j.jbiomech.2016.02.006
|
GRAZI L, CREA S, PARRI A, et al. Gastrocnemius myoelectric control of a robotic hip exoskeleton can reduce the user’s lower-limb muscle activities at push off[J]. Frontiers in Neuroscience, 2018, 12: 1-11 doi: 10.3389/fnins.2018.00001
|
SYLOS-LABINI F, LA S V, D’AVELLA A, et al. EMG patterns during assisted walking in the exoskeleton[J]. Frontiers in Human Neuroscience, 2014, 8: 423
|
YIN Y H, FAN Y J, XU L D. EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 542-549 doi: 10.1109/TITB.2011.2178034
|
IVANENKO Y P, POPPELE R E, LACQUANITI F. Motor control programs and walking[J]. Neuroscientist, 2006, 12(4): 339-348 doi: 10.1177/1073858406287987
|
KAWAMOTO H, TAAL S, NINISS H, et al. Voluntary motion support control of Robot Suit HAL triggered by bioelectrical signal for hemiplegia[C]//Annual International Conference of the Ieee Engineering in Medicine and Biology Society. Chicago: IEEE, 2010: 462-466
|
PETERSON M D, RHEA M R, SEN A, et al. Resistance exercise for muscular strength in older adults:a meta-analysis[J]. Ageing Research Reviews, 2010, 9(3): 226-237 doi: 10.1016/j.arr.2010.03.004
|
CAPPELLINI G, IVANENKO Y P, POPPELE R E, et al. Motor patterns in human walking and running[J]. Journal of Neurophysiology, 2006, 95(6): 3426-3437 doi: 10.1152/jn.00081.2006
|
刘放,程文明,邬钱涌. 基于缓冲结构设计的携行式外骨骼研究[J]. 机械设计与研究,2012,28(5): 37-40 doi: 10.3969/j.issn.1006-2343.2012.05.010
LIU Fang, CHENG Wenming, WU Qianyong. Research of portable exoskeleton based on buffer design[J]. Machine Design and Research, 2012, 28(5): 37-40 doi: 10.3969/j.issn.1006-2343.2012.05.010
|
CLARK D J, TING L H, ZAJAC F E, et al. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke[J]. Journal of Neurophysiology, 2010, 103(2): 844-857 doi: 10.1152/jn.00825.2009
|
LUNDBERG H J, ROJAS I L, FOUCHER K C, et al. Comparison of antagonist muscle activity during walking between total knee replacement and control subjects using unnormalized electromyography[J]. Journal of Arthroplasty, 2015, 31(6): 1331-1339
|
HURD W J, SNYDERMACKLER L. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait[J]. Journal of Orthopaedic Research, 2007, 25(10): 1369-1377 doi: 10.1002/jor.v25:10
|
SOUISSI H, ZORY R, BREDIN J, et al. Comparison of methodologies to assess muscle co-contraction during gait[J]. Journal of Biomechanics, 2017, 57: 141-145 doi: 10.1016/j.jbiomech.2017.03.029
|
HEIDEN T L, LLOYD D G, ACKLAND T R. Knee joint kinematics,kinetics and muscle co-contraction in knee osteoarthritis patient gait[J]. Clinical Biomechanics, 2009, 24(10): 833-841 doi: 10.1016/j.clinbiomech.2009.08.005
|
SAITO A, TOMITA A, ANDO R, et al. Muscle synergies are consistent across level and uphill treadmill running[J]. Scientific Reports, 2018, 8(1): 5979
|
谢平,李欣欣,杨春华,等. 基于表面肌电非负矩阵分解与一致性的肌间协同-耦合关系研究[J]. 中国生物医学工程学报,2017,36(2): 150-157 doi: 10.3969/j.issn.0258-8021.2017.02.004
XIE Ping, LI Xinxin, YANG Chunhua. Research on the intermuscular synergy and coupling analysis based on surface EMG on negative matrix factorization-coherence[J]. Chinese Journal of Biomedical Engineering Machine Design and Research, 2017, 36(2): 150-157 doi: 10.3969/j.issn.0258-8021.2017.02.004
|
CHVATAL S A, TING L H. Common muscle synergies for balance and walking[J]. Frontiers in Computational Neuroscience, 2013, 7(5): 48
|
SAWERS A, ALLEN J L, TING L H. Long-term training modifies the modular structure and organization of walking balance control[J]. Journal of Neurophysiology, 2015, 114(6): 3359-3373 doi: 10.1152/jn.00758.2015
|
KOLLER J R, JACOBS D A, FERRIS D P, et al. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton[J]. Journal of Neuroengineering & Rehabilitation, 2015, 12(1): 1-14
|
YOUNG A J, FOSS J, GANNON H, et al. Influence of power delivery timing on the energetics and biomechanics of humans wearing a hip exoskeleton[J]. Frontiers in Bioengineering & Biotechnology, 2017, 5: 1-11
|