• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Boming, CHEN Hongyu, LI Zhize, TAN Hongyuan. Curve-Passing Dynamic Performance of Portal Bogie with Forced Steering Mechanism[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 91-97. doi: 10.3969/j.issn.0258-2724.2016.01.014
Citation: SUN Yue, TAN Ruoxi, TANG Chunsen, WANG Zhihui, DAI Lin. Optimized Design of New Coupling Mechanism for Electric Vehicles[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1078-1086. doi: 10.3969/j.issn.0258-2724.2018.05.027

Optimized Design of New Coupling Mechanism for Electric Vehicles

doi: 10.3969/j.issn.0258-2724.2018.05.027
  • Received Date: 28 Mar 2017
  • Publish Date: 01 Oct 2018
  • Aimed at the application of wireless charging in electric vehicles, a type of concave-convex magnetic coupling mechanism is proposed, which realizes better coupling characteristics and improves the system power transmission capacity. Based on the finite element theory and the COMSOL simulation software, a model of the concave-convex coupling mechanism was developed. According to the height of the convex magnetic core at both ends of the coil, the length ratio of the convex magnetic core at both ends of the coil, and the core length, the relationship between the length and the width of the core and the main structural parameters such as the thickness of the core was analysed and optimised from the perspective of mutual inductance and coupling coefficient, respectively. The magnetic saturation after thinning is also discussed. The feasibility of the coupled mechanism and the advantages of the magnetic field distribution and coupling characteristics were verified by the simulation and experimental results. The output power and efficiency of the system improved by 37% and 10%, respectively, compared with those of the original strip core structure.

     

  • BUDHIA M, COVIC G A, BOYS J T. Design and optimization of circular magnetic structures for lumped inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3096-3108
    HUANG C, JAMES J E, COVIC G A. Design considerations for variable coupling lumped coil systems[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 680-689
    NAGENDRA G R, CHEN L, COVIC G A, et al. Detection of EVs on IPT highways[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(3): 584-597
    BUDHIA M, BOYS J T, Covic G A, et al. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328
    COVIC G A, BOYS J T. Inductive power transfer[J]. Proceedings of the IEEE, 2013, 101(6): 1276-1289
    KISSIN M L G, BOYS J T, COVIC G A. Interphase mutual inductance in polyphase inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2393-2400
    ZAHEER A, HAO H, COVIC G A, et al. Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 1937-1955
    COVIC G A, BOYS J T. Modern trends in inductive power transfer for transportation applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(1): 28-41
    ELLIOTT G, RAABE S, COVIC G A, et al. Multiphase pickups for large lateral tolerance contactless power-transfer systems[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1590-1598
    RAABE S, COVIC G A. Practical design considerations for contactless power transfer quadrature pick-ups[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 400-409
    BUDHIA M, COVIC G, BOYS J. A new IPT magnetic coupler for electric vehicle charging systems[C]// IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society. Glendale: [s.n.], 2010, 7500(1): 2487-2492
    BUDHIA M, COVIC G A, BOYS J T, et al. Development and evaluation of single sided flux couplers for contactless electric vehicle charging[C]// 2011 IEEE Energy Conversion Congress and Exposition. [S.l.]: IEEE, 2011, 47(10): 614-621
    TAKANASHI H, SATO Y, KANEKO Y, et al. A large air gap 3kW wireless power transfer system for electric vehicles[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE). Raleigh: [s.n.], 2012, 11(4): 269-274
    NAGATSUKA Y, EHARA N, KANKEO Y, et al. Compact contactless power transfer system for electric vehicles[C]//International Power Electronics Conference (IPEC). Sapporo: [s.n.], 2010: 807-813
    LEE J, SHEN H, LEE K. Design and implementation of weaving-type pad for contactless EV inductive charging system[J]. IET Power Electronics, 2014, 10(7): 2533-2542
    JANG Y J, KO Y D, JEONG S. Optimal design of the wireless charging electric vehicle[C]//2012 IEEE International Electric Vehicle Conference. Greenville: IEEE, 2012: 1-5
    PARK C, LEE S W, RIM C T. 5m-off-long-distance inductive power transfer system using optimum shaped dipole coils[C]//Proceedings of the 7th International Power Electronics and Motion Control Conference. Harbin: [s.n.], 2012, 2: 1137-1142
    HU C, SUN Y, LV X, et al. Magnetic coupler design procedure for IPT system and its application to EVs' wireless charging[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 47(3): 861-873
  • Relative Articles

    [1]BI Jingguo, KE Zhihao, YANG Yiying, LI Zhengyan, DENG Zigang. Lateral Control of Permanent Magnet Electrodynamic Suspension Vehicle Based on Improved Nonlinear Model Predictive Controller[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240494
    [2]HU Lu, LE Shitong, ZHU Juanxiu. Electric Truck Route Planning Considering Multiple Charging Pile Queues and Time Windows[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230084
    [3]LI Qi, HUANG Lanjia, QIU Yibin, SUN Cai, FU Wangxuan, CHEN Weirong. Two-Stage Robust Scheduling Optimization of AC/DC Hybrid Microgrid with Electric Vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 36-45. doi: 10.3969/j.issn.0258-2724.20200290
    [4]HU Guangdi, WANG Guohui, LUO Huiyu, ZHOU Ke, LANG Xiaoyue. Robust Control of the Air Conditioning System of an Electric Vehicle with Actuator Fault[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 351-358. doi: 10.3969/j.issn.0258-2724.2018.02.018
    [5]SU Yugang, ZHANG Shuai, XU Yong, TANG Chunsen. Design and Switching Control of Power Supply Coils Applied to ICPT-Based Electric Vehicles[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 168-176. doi: 10.3969/j.issn.0258-2724.2016.01.024
    [6]XU Jin, ZHAO Jun, LUO Qing, SHAO Yiming. Driving Speed Decision-Making on Complex Highways Based on Strategy of Trajectory-Speed Coupling[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 577-589. doi: 10.3969/j.issn.0258-2724.2015.04.002
    [7]LI Xin, SHANG Tao, ZHOU Wei. Evaluation of Coordination between Railway Transportation and Open-Pit Mining Based on Efficacy and Coupling[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 490-494. doi: 10.3969/j.issn.0258-2724.2012.03.022
    [8]CHEN Xiaoping, WANG Ping, CHEN Rong, GUO Likang. Spatial Coupling Vibration Properties of High-Speed Vehicle-Turnout[J]. Journal of Southwest Jiaotong University, 2008, 21(4): 453-458.
    [9]YANG Dan, FANG Jian, LIAO Cheng, REN Lang. Application of PML Absorbing Boundary Condition in Numerical Simulation of Pulses Coupling into Slot[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 108-112.
    [10]WANG Kai-yun, ZHAI Wan-ming, CAI Cheng-biao. Simulation of Lateral Dynamic Performances of Locomotives and Vehicles—Comparison of Vehicle/Track Coupling Model with Traditional Vehicle Model[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 17-21.
    [11]XUZhi-sheng, ZHAI Wan-ming, WANG Kai-yun. Analysis of Vehicle-Track Coupling Vibration Based on Timoshenko Beam Model[J]. Journal of Southwest Jiaotong University, 2003, 16(1): 22-27.
    [12]WANG Jun, YANG Fan, CHEN Da-peng. An Isotropic Viscoelastic Model Coupled with Hydrothermal Effects[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 642-646.
    [13]HE Yu-long, YANGLi-zhong, YANGMing. A Quantitative Method for the Coupling Effect of Temperature Fields and Stress Fields in Rock Mass[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 10-13.
    [14]MAXian-min, CHENQuan-shi. The Design and Simulation of Electric Vehicle Drive System with High Frequency AC Pulse Density Modulation[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 81-84.
    [15]SU Qian, CAI Ying. A Spatial Time-Varying Coupling Model for Dynamic Analysis of High Speed Railway Subgrade[J]. Journal of Southwest Jiaotong University, 2001, 14(5): 509-513.
    [16]HuangTao, YangLizhong. A Prediction of Water-Gush Yield in Fractured Tunnels under Coupling among Seepage, Stress and Temperature[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 554-559.
    [17]TangHuaping, KongXiang an. A Recursive Formulation for the Dynamic Analysis of Open Loop Tree Deferrable Multibody Systems[J]. Journal of Southwest Jiaotong University, 1999, 12(3): 284-289.
    [18]Huang Tao, Yang Lizhong, Chen Yili. A Mathematical Model for the Coupling among Groundwater Seepage-Stress-Temperature in Engineering Rock Mass[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 12-15.
    [19]Zeng Youwen, WangShaohua, ZhanKunlun. A Study on the Vehicle-Guideway Coupling Vibration and Suspension Parameters of Maglev Train[J]. Journal of Southwest Jiaotong University, 1999, 12(2): 168-173.
  • Cited by

    Periodical cited type(4)

    1. 熊萌,张栋,尤国建,孙添飞,盛凯,魏学哲. 电动汽车无线充电高效高利用率磁芯的多目标优化设计. 汽车工程. 2023(09): 1740-1752 .
    2. 熊萌,戴海峰,魏学哲. 高饱和柔性纳米晶磁芯在电动汽车无线充电中的应用. 同济大学学报(自然科学版). 2020(11): 1638-1648 .
    3. 张河山,邓兆祥,妥吉英,张羽,陶胜超. 基于改进人工蜂群算法的轮毂电机多目标优化. 西南交通大学学报. 2019(04): 671-678 . 本站查看
    4. 亢凯,侯信宇,左志平,费迎军. 多中继模式无线电能传输系统建模与传输效率分析. 电器与能效管理技术. 2019(17): 50-55 .

    Other cited types(39)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 33.7 %FULLTEXT: 33.7 %META: 64.4 %META: 64.4 %PDF: 1.9 %PDF: 1.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.8 %其他: 6.8 %Seattle: 0.4 %Seattle: 0.4 %上海: 0.8 %上海: 0.8 %临汾: 0.4 %临汾: 0.4 %六安: 0.2 %六安: 0.2 %兰州: 0.4 %兰州: 0.4 %北京: 1.5 %北京: 1.5 %十堰: 1.3 %十堰: 1.3 %南京: 0.6 %南京: 0.6 %南通: 1.0 %南通: 1.0 %哈尔滨: 0.4 %哈尔滨: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 1.9 %天津: 1.9 %宣城: 0.8 %宣城: 0.8 %常州: 0.8 %常州: 0.8 %平顶山: 0.2 %平顶山: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 2.3 %张家口: 2.3 %徐州: 0.2 %徐州: 0.2 %成都: 1.0 %成都: 1.0 %扬州: 1.5 %扬州: 1.5 %杭州: 1.9 %杭州: 1.9 %武汉: 0.2 %武汉: 0.2 %池州: 3.0 %池州: 3.0 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.4 %洛阳: 0.4 %温州: 1.5 %温州: 1.5 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.2 %湘潭: 0.2 %漯河: 5.9 %漯河: 5.9 %烟台: 0.2 %烟台: 0.2 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 21.5 %芒廷维尤: 21.5 %芝加哥: 0.4 %芝加哥: 0.4 %西宁: 34.4 %西宁: 34.4 %西安: 1.3 %西安: 1.3 %贵阳: 0.2 %贵阳: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.5 %郑州: 1.5 %重庆: 0.2 %重庆: 0.2 %长沙: 2.7 %长沙: 2.7 %青岛: 0.2 %青岛: 0.2 %马鞍山: 0.2 %马鞍山: 0.2 %其他Seattle上海临汾六安兰州北京十堰南京南通哈尔滨嘉兴天津宣城常州平顶山广州张家口徐州成都扬州杭州武汉池州沈阳洛阳温州湖州湘潭漯河烟台石家庄秦皇岛芒廷维尤芝加哥西宁西安贵阳邯郸郑州重庆长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article views(552) PDF downloads(35) Cited by(43)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return