• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHANG Qinghua, ZHANG Ying, CHENG Zhenyu, KANG Jiping, HE Jing. Static Behavior and Key Influencing Factors of Double-Cable Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 238-246. doi: 10.3969/j.issn.0258-2724.20170908
Citation: ZHANG Qinghua, ZHANG Ying, CHENG Zhenyu, KANG Jiping, HE Jing. Static Behavior and Key Influencing Factors of Double-Cable Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 238-246. doi: 10.3969/j.issn.0258-2724.20170908

Static Behavior and Key Influencing Factors of Double-Cable Suspension Bridge

doi: 10.3969/j.issn.0258-2724.20170908
  • Received Date: 16 Dec 2017
  • Rev Recd Date: 06 Aug 2018
  • Available Online: 30 Oct 2019
  • Publish Date: 01 Apr 2020
  • Double-cable suspension bridge system is one of structural systems suitable for long-span multi-tower suspension bridges. In order to study the mechanical properties of the bridge system, the finite element method is used to analyze its static behavior and the effect of key design parameters. First, the main design parameters of a double-cable multi-tower suspension bridge are determined according to a typical single-cable multi-tower suspension bridge, and finite element models of the two types of suspension bridges are established. Based on the models, the vertical stiffness values of the two suspension bridges are then compared. Finally, the influence of key design parameters such as the ratio of side to main span, stiffness of middle tower, dead load distribution ratio, and rise-span ratio on the total unbalanced force of the main cable, vertical displacement at top tower, and the maximum mid-span deflections of the main beam are studied. The results show that compared with the single-cable bridge, the double-cable bridge can effectively improve the vertical stiffness of the bridge system and greatly reduce the total unbalanced force of the main cable. Reducing the ratio of side to main span has little effect on the vertical stiffness of the double-cable bridge and the total unbalanced force of the main cable. On the contrary, increasing the middle tower stiffness can improve the vertical stiffness of the double-cable bridge significantly, but simultaneously resulting in a large increase in the unbalanced force of the main cable. When the dead load distribution ratio ranges from 1.0 to 2.0, the displacement at middle tower top and mid-span deflections of main beams are smaller in the double-cable bridge. In addition, decreasing the rise-span ratio of top cable or increasing the rise-span ratio of bottom cable can significantly improve the vertical stiffness of the double cable bridge, and thus effectively reduce the maximum mid-span deflections of the main beam and the displacement at the middle tower top.

     

  • 肖汝诚. 桥梁结构体系[M]. 北京: 人民交通出版社, 2013: 307-313.
    王忠彬,万田保. 泰州长江公路大桥三塔两跨悬索桥结构行为特征[J]. 桥梁建设,2008(2): 38-40, 59.

    WANG Zhongbin, WAN Tianbao. Characteristics of structural behavior of three-tower and two-span suspension bridge of Taizhou Changjiang river highway bridge[J]. Bridge Construction, 2008(2): 38-40, 59.
    肖世国,赵琳智. 悬索桥隧道式锚碇侧摩阻力近似解析算法[J]. 西南交通大学学报,2018,53(5): 974-981.

    XIAO Shiguo, ZHAO Linzhi. Approximate analytical method for skin friction of tunnel-type anchorage used in suspension bridge engineering[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 974-981.
    OSAMU Y, MOTOI O, TAKEO M. Structural characteristics and applicability of four span suspension bridge[J]. Journal of Bridge Engineering, 2004, 9(5): 453-463. doi: 10.1061/(ASCE)1084-0702(2004)9:5(453)
    JAEHO J, JAEHONG K, JONGGYUN B, et al. Practical design of continuous two main-span suspension bridge in Korea[C]//34th International Symposium on Bridge and Structural Engineering. Venice: IABSE, 2010: 62-69.
    何婧. 大跨度双缆悬索桥结构体系及其受力特性研究[D]. 成都: 西南交通大学, 2016.
    GIMSING N J. Cable supported bridges[M]. 2nd ed. Chichester: John Wiley, 1997: 183-185.
    陈艾荣, 陈文明. 多塔悬索桥的性能[C]//中国公路学会桥梁和结构工程学会, 桥梁学术研讨会论文集. 北京: 人民交通出版社, 2001: 561-566.
    肖恩源. 再论悬挂索的重力刚度—双索、多跨[J]. 公路,2001(7): 67-72. doi: 10.3969/j.issn.0451-0712.2001.07.017

    XIAO Enyuan. Discussing gravity stiffness of suspension bridge gravity stiffness of suspended cable— double cables and multispan[J]. Highway, 2001(7): 67-72. doi: 10.3969/j.issn.0451-0712.2001.07.017
    柴生波,肖汝诚,孙斌. 双缆悬索桥体系的力学特性(I)[J]. 华南理工大学学报(自然科学版),2011,39(12): 159-163. doi: 10.3969/j.issn.1000-565X.2011.12.027

    CHAI Shengbo, XIAO Rucheng, SUN Bin. Mechanical characteristics of double-cable suspension bridge(I)[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(12): 159-163. doi: 10.3969/j.issn.1000-565X.2011.12.027
    柴生波,肖汝诚,孙斌. 双缆悬索桥体系的力学特性(II)[J]. 华南理工大学学报(自然科学版),2012,40(2): 23-28. doi: 10.3969/j.issn.1000-565X.2012.02.005

    CHAI Shengbo, XIAO Rucheng, SUN Bin. Mechanical characteristics of double-cable suspension bridge(II)[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(2): 23-28. doi: 10.3969/j.issn.1000-565X.2012.02.005
    柴生波,肖汝诚. 双缆悬索桥体系的力学特性(III)[J]. 华南理工大学学报(自然科学版),2013,41(8): 120-125. doi: 10.3969/j.issn.1000-565X.2013.08.020

    CHAI Shengbo, XIAO Rucheng. Mechanical characteristics of double-cable suspension bridge(III)[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(8): 120-125. doi: 10.3969/j.issn.1000-565X.2013.08.020
    WANG Xiulan, CHAI Shengbo, XU Yue. Deformation characteristics of double-cable multispan suspension bridges[J]. Journal of Bridge Engineering, 2016, 21(4): 1-7. doi: 10.1061/(ASCE)BE.1943-5592.0000858
    WANG Xiulan, CHAI Shengbo, XU Yue. Sliding resistance of main cables in double-cable multispan suspension bridges[J]. Journal of Bridge Engineering, 2017, 22(3): 1-7. doi: 10.1061/(ASCE)BE.1943-5592.0001018
    WANG Xiulan, CHAI Shengbo. Determining the middle tower stiffness value in an in-plane double-cable triple-tower suspension bridge[J]. Journal of Bridge Engineering, 2018, 23(7): 1-6.
    张清华,韩少辉,贾东林,等. 新型装配式UHPC华夫型上翼缘组合梁受力性能[J]. 西南交通大学学报,2019,54(3): 445-452,442.

    ZHANG Qinghua, HAN Shanhui, JIA Donglin, et al. Mechanical performance of novel perfabricated composite girder with top flange of ultra hight performance concrete waffle deck panel[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 445-452,442.
    张清华,李乔. 悬索桥主缆鞍座间摩擦特性试验研究[J]. 土木工程学报,2013,46(4): 85-92.

    ZHANG Qinghua, LI Qiao. Studies on cable-saddle frictional characteristics for long-span suspension bridges[J]. China Civil Engineering Journal, 2013, 46(4): 85-92.
    张清华,李乔,周凌远. 悬索桥主缆与鞍座摩擦问题理论分析方法研究[J]. 中国公路学报,2014,27(1): 44-50. doi: 10.3969/j.issn.1001-7372.2014.01.007

    ZHANG Qinghua, LI Qiao, ZHOU Lingyuan. Theoretical analysis of cable-saddle frictional characteristics for suspension bridges[J]. China Journal of Highway and Transport, 2014, 27(1): 44-50. doi: 10.3969/j.issn.1001-7372.2014.01.007
    ZHANG Qinghua, CHENG Zhenyu, CUI Chuang, et al. Analytical model for frictional resistance between cable and saddle of suspension bridges equipped with vertical friction plates[J]. Journal of Bridge Engineering, 2017, 22(1): 1-12. doi: 10.1061/(ASCE)BE.1943-5592.0000986
    CHENG Zhenyu, ZHANG Qinghua, JIA Donglin, et al. Analytical study on frictional resistance between cable and saddle equipped with friction plates for multispan suspension bridges[J]. Journal of Bridge Engineering, 2018, 23(1): 1-13. doi: 10.1061/(ASCE)BE.1943-5592.0001176
    张清华,程震宇,贾东林,等. 悬索桥主缆与鞍座抗滑移安全系数的确定方法[J]. 中国公路学报,2017,30(7): 41-49. doi: 10.3969/j.issn.1001-7372.2017.07.006

    ZHANG Qinghua, CHENG Zhenyu, JIA Donglin, et al. Method for determining anti-slip safety factors between main cable and saddle in suspension bridge[J]. China Journal of Highway and Transport, 2017, 30(7): 41-49. doi: 10.3969/j.issn.1001-7372.2017.07.006
    沈锐利,王路,王昌将,等. 悬索桥主缆与索鞍间侧向力分布模式的模型试验研究[J]. 土木工程学报,2017,50(10): 75-81.

    SHEN Ruili, Wang Lu, Wang Changjiang, et al. Experimental study on distribution pattern of lateral force between main cable and cable saddle for suspension bridge[J]. China Civil Engineering Journal, 2017, 50(10): 75-81.
    王路,沈锐利,王昌将,等. 悬索桥主缆与索鞍间侧向力理论计算方法与公式研究[J]. 土木工程学报,2017,50(12): 87-96.

    WANG Lu, SHEN Ruili, WANG Changjiang, et al. Experimental study on distribution pattern of lateral force between main cable and cable saddle for suspension bridge[J]. China Civil Engineering Journal, 2017, 50(12): 87-96.
  • Relative Articles

    [1]YANG Yongzhi. Shape Analysis of Main Cable of Single Tower Suspension Bridge with Unilateral Spatial Cable Plane and Curved Beam[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 298-306. doi: 10.3969/j.issn.0258-2724.20230197
    [2]LEI Yongfu, LI Ming, SUN Yanguo, LI Mingshui. Experimental Study on Flutter Performance of Long-Span Suspension Bridge with Double-Deck Truss Girder[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.20200599
    [3]XIAO Shiguo, ZHAO Linzhi. Approximate Analytical Method for Skin Friction of Tunnel-Type Anchorage Used in Suspension Bridge Engineering[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 974-981. doi: 10.3969/j.issn.0258-2724.2018.05.014
    [4]HUANG Guoqing, SU Yanwen, PENG Liuliu, MA Cunming, LIAO Haili, LI Mingshui. Response Analysis of Long-Span Suspension Bridge under Mountainous Winds[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 610-616. doi: 10.3969/j.issn.0258-2724.2015.04.006
    [5]QI Dongchun, SHEN Ruili, LIU Zhangjun, TAN Yunzhi. 3-Node Sptial Saddle Element for Finite Element Calculation of Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 942-947. doi: 10.3969/j.issn.0258-2724.2014.06.002
    [6]ZHUGE Ping, ZHANG Zihua, WANG Sicong, DING Yong, QIANG Shizhong. Anti-slip Performance of Interface between Carbon Fiber-Reinforced Plastic Main Cable and Cable Clamp for Large-Span Suspension Bridges[J]. Journal of Southwest Jiaotong University, 2014, 27(2): 208-212. doi: 10.3969/j.issn.0258-2724.2014.02.004
    [7]LI Cuijuan, XU Xun, QIANG Shizhong. Dynamic Responses of Super-Long-Span Suspension Bridge with CFRP Cables under Different Structural Design Parameters[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 419-424. doi: 10.3969/j.issn.0258-2724.2014.03.008
    [8]LI Yongle, YI Renyan, WANG Dongxu, LIAO Haili. Time-Domain Analysis of Galloping of Main Cables of Suspension Bridge during Erection Process[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 21-28. doi: 10.3969/j.issn.0258-2724.2013.01.004
    [9]ZHANG Xingbiao, SHEN Ruili, TANG Maolin, YE Huawen. Accurate Calculation and Adjustment Methods for Cable Forces of Anchor-Span Strands for Suspension Bridges[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 551-557. doi: 10.3969/j.issn.0258-2724.2012.04.003
    [10]HOU Suwei, ZHUGE Ping, QIANG Shizhong, LI Cuijuan. Experimental Investigation of Friction Properties between CFRP Main Cable and Saddle of Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 391-397. doi: 10.3969/j.issn.0258-2724.2011.03.006
    [11]KANG Rui, ZHENG Kaifeng, LI Huaiguang, CHEN Libo. Rigidity Characteristics of Multi-span Suspension Bridges under Train Loads[J]. Journal of Southwest Jiaotong University, 2010, 23(3): 346-350. doi: 10. 3969/ j. issn. 0258-2724.
    [12]ZHENG Kaifeng, LI Huaiguang, XU Rundong. Rigidity Characteristics of Multi-span Suspension Bridges[J]. Journal of Southwest Jiaotong University, 2009, 22(3): 342-346.
    [13]CHEN Changsong, SU Long, YAN Donghuang. Accurate Nonlinear Analysis of Tower and Cable in Construction of Main Cable for Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2007, 20(1): 44-48.
    [14]WEIJian-dong, XUWei-guo, LIUZhong-yu. LongitudinalCurve Design ofCable Saddles in Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2005, 18(2): 215-219.
    [15]TANGMao-lin, SHENRui-li, QIANG Shi-zhong. An Accurate Calculation Method for Erecting Curves of Wire Strands of Long Suspension Bridges[J]. Journal of Southwest Jiaotong University, 2001, 14(3): 303-307.
    [16]LIUGao, WANGXiu-wei, QIANG Shi-zhong. Suppressing the Flutter of Suspension Bridges with Additional Surfaces Attached belowthe Trailing Edge Deck[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 12-16.
    [17]ZHENG Shi-xiong, ZHOUShu-hua, LIAOHai-li. Study on Nonlinear Wind Resisting Static Stability of Catwalk of Suspension Bridge[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 348-451.
    [18]LIU Cheng-long, ZHANG De-qiang, HUANG Ze-chun. Cause Analysis and Monitoring of Deformation of the Cable Support Tower of Large Span Suspension Bridge During Construction[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 501-504.
  • Cited by

    Periodical cited type(11)

    1. 柴生波,王克文,王秀兰,吴骞. 基于模型试验的双缆多塔悬索桥力学特性研究. 计算力学学报. 2024(06): 1020-1028 .
    2. 徐文城,王得道,李顺龙. 大跨悬索桥上活动风障失效对桥梁变形的影响. 公路. 2023(08): 113-117 .
    3. 柴生波,吴骞,王秀兰,王克文. 双缆悬索桥空缆状态主缆抗滑安全性研究. 计算力学学报. 2023(03): 366-374 .
    4. 邹兰林,喻骁. 湖北国际物流枢纽中心配套工程:燕矶长江大桥边缆角度对主缆的静力学影响. 物流科技. 2023(19): 48-51+65 .
    5. 肖鑫,郭辉,苏朋飞,冯传宝. 千米级高速铁路悬索桥静力特性分析. 铁道科学与工程学报. 2023(09): 3229-3241 .
    6. 王秀兰,张云龙,柴生波,蒲广宁. 双缆多塔悬索桥主缆垂跨比的合理取值. 公路交通科技. 2021(07): 51-59 .
    7. 杨会伟,董经民,郑芳俊,冯凌斐,张恩,路国运. 高耸结构临时支撑卸载过程的数值模拟与监测——以北疆明珠塔为例. 太原理工大学学报. 2021(06): 981-989 .
    8. 张云龙,王秀兰,柴生波. 双缆多塔悬索桥塔梁受力特性研究. 广西大学学报(自然科学版). 2021(05): 1177-1187 .
    9. 白伦华,沈锐利,苗如松,张兴标,王路. 箱梁与缆索承重桥梁理论2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 43-52 .
    10. 黄侨,单彧诗,宋晓东,李林,李维珍. 特大跨径地锚式悬索桥静力稳定性分析. 哈尔滨工业大学学报. 2020(06): 140-148 .
    11. 虢曙安. 特大跨径钢桁梁悬索桥静载试验. 长安大学学报(自然科学版). 2020(06): 67-76 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-0705101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 39.0 %FULLTEXT: 39.0 %META: 57.9 %META: 57.9 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.2 %其他: 7.2 %China: 0.3 %China: 0.3 %[]: 0.7 %[]: 0.7 %上海: 1.3 %上海: 1.3 %中山: 0.5 %中山: 0.5 %临汾: 0.3 %临汾: 0.3 %丽水: 0.2 %丽水: 0.2 %兰州: 1.3 %兰州: 1.3 %北京: 3.3 %北京: 3.3 %南京: 1.5 %南京: 1.5 %南昌: 0.2 %南昌: 0.2 %卡萨布兰卡: 0.3 %卡萨布兰卡: 0.3 %台州: 0.2 %台州: 0.2 %哥伦布: 0.3 %哥伦布: 0.3 %天津: 0.7 %天津: 0.7 %宣城: 0.2 %宣城: 0.2 %山景城: 0.2 %山景城: 0.2 %庆阳: 0.5 %庆阳: 0.5 %延安: 0.3 %延安: 0.3 %张家口: 3.1 %张家口: 3.1 %徐州: 0.3 %徐州: 0.3 %成都: 2.6 %成都: 2.6 %扬州: 0.3 %扬州: 0.3 %无锡: 0.3 %无锡: 0.3 %日喀则: 0.2 %日喀则: 0.2 %昆明: 0.3 %昆明: 0.3 %曼谷: 0.3 %曼谷: 0.3 %杭州: 1.3 %杭州: 1.3 %武汉: 1.6 %武汉: 1.6 %池州: 0.5 %池州: 0.5 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.3 %洛阳: 0.3 %淄博: 0.3 %淄博: 0.3 %深圳: 0.3 %深圳: 0.3 %漯河: 2.0 %漯河: 2.0 %石家庄: 2.1 %石家庄: 2.1 %福州: 0.3 %福州: 0.3 %科金博大区: 0.3 %科金博大区: 0.3 %胡志明: 0.3 %胡志明: 0.3 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %芜湖: 0.3 %芜湖: 0.3 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %襄阳: 0.3 %襄阳: 0.3 %西宁: 34.6 %西宁: 34.6 %西安: 1.1 %西安: 1.1 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.8 %运城: 0.8 %郑州: 0.8 %郑州: 0.8 %重庆: 1.3 %重庆: 1.3 %长沙: 1.5 %长沙: 1.5 %黔南: 0.2 %黔南: 0.2 %其他China[]上海中山临汾丽水兰州北京南京南昌卡萨布兰卡台州哥伦布天津宣城山景城庆阳延安张家口徐州成都扬州无锡日喀则昆明曼谷杭州武汉池州沈阳洛阳淄博深圳漯河石家庄福州科金博大区胡志明芒廷维尤芜湖芝加哥苏州襄阳西宁西安贵阳运城郑州重庆长沙黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(9)

    Article views(765) PDF downloads(26) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return