• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHANG Qinghua, JIN Tong, LI Jun, BU Yizhi. Study on Reinforcement for Fatigue Cracking of Rib-to-Diaphragm Welded Joints of Steel Bridge Deck[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 92-99. doi: 10.3969/j.issn.0258-2724.20170744
Citation: ZHANG Qinghua, JIN Tong, LI Jun, BU Yizhi. Study on Reinforcement for Fatigue Cracking of Rib-to-Diaphragm Welded Joints of Steel Bridge Deck[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 92-99. doi: 10.3969/j.issn.0258-2724.20170744

Study on Reinforcement for Fatigue Cracking of Rib-to-Diaphragm Welded Joints of Steel Bridge Deck

doi: 10.3969/j.issn.0258-2724.20170744
  • Received Date: 30 Oct 2017
  • Rev Recd Date: 05 Feb 2018
  • Available Online: 11 Dec 2019
  • Publish Date: 01 Feb 2020
  • In order to study the reinforcement effects of bolted angle steel on fatigue cracking of the orthotropic steel bridge deck, the full-scale test model was used to study the reinforcement effect of fatigue cracks on the rib-to-diaphragm welded joints. A finite element model with fatigue cracks was established using ANSYS, and to study the reinforcement effects under different length of fatigue cracks conditions based on the fracture mechanics theory. The results indicate that the fatigue cracks initiate from the toe of longitudinal rib-to-diaphragm welded joints and expand along the longitudinal web, the reinforcement method with bolted angle steel can reduce the main tensile stress of the key measure points at the cracking details and the strain of measure points at crack tips by 56% and 80%, respectively. The stress intensity factor of the crack tip is reduced by more than 80% after bolting angle steel reinforcement, and crack propagation rate is reduced significantly. For the different lengths of fatigue cracks before the longitudinal rib webs, the amplitude of the crack tip stress intensity factor is reduced by 60%−90% using the reinforcement method, but with the increase of the fatigue cracks length, the reinforcement effects are reduced continuously, the reasonable selection of the reinforcement time is one of the key factors in the reinforcement effects.

     

  • 张清华,卜一之,李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报,2017,30(3): 14-30. doi: 10.3969/j.issn.1001-7372.2017.03.002

    ZHANG Qinghua, BU Yizhi, LI Qiao. Review on fatigue research of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30. doi: 10.3969/j.issn.1001-7372.2017.03.002
    孟凡超, 张清华, 谢红兵, 等. 抗疲劳钢桥面板关键技术[M]. 北京: 人民交通出版社, 2015: 5-10.
    王春生,翟慕赛,HOUANKPO T N O,等. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报,2016,29(8): 50-58. doi: 10.3969/j.issn.1001-7372.2016.08.007

    WANG Chunsheng, ZHAI Musai, HOUANKPO T N O, et al. Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8): 50-58. doi: 10.3969/j.issn.1001-7372.2016.08.007
    WOLCUM R. Lessons from weld cracks in orthotropic decks on three european bridge[J]. Journal of Structural Engineering, 1990, 116(1): 75-84. doi: 10.1061/(ASCE)0733-9445(1990)116:1(75)
    钱冬生. 关于正交异性钢桥面板的疲劳——对英国在加固其塞文桥渡时所作研究的评价[J]. 桥梁建设,1996(2): 8-13.

    QIAN Dongsheng. On fatigue of steel orthotropic deck structure:comments on researches for strengthening the severn crossing in UK[J]. Bridge Construction, 1996(2): 8-13.
    RODRIGUEZ-SANCHEZ J E, DOVER W D, BRENNAN F P. Application of short repairs for fatigue life extension[J]. International Journal of Fatigue, 2004, 26(4): 413-420. doi: 10.1016/j.ijfatigue.2003.07.002
    李传习,李游,陈卓异,等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报,2017,30(3): 121-131. doi: 10.3969/j.issn.1001-7372.2017.03.013

    LI Chuanxi, LI You, CHEN Zhuoyi, et al. Fatigue cracking reason and detail dimension of reinforcement about transverse diaphragm of steel box girder[J]. China Journal of Highway and Transport, 2017, 30(3): 121-131. doi: 10.3969/j.issn.1001-7372.2017.03.013
    朱爱珠,李牧,田杨,等. 设内隔板正交异性钢桥面板足尺疲劳试验[J]. 钢结构,2017,32(1): 45-50.

    ZHU Aizhu, LI Mu, TIAN Yang, et al. Fatigue test on full-scale orthotropic steel bridge deck with inner diaphragm[J]. Steel Construction, 2017, 32(1): 45-50.
    CHOI J H, KIM D H. Stress characteristics and fatigue crack behavior of the longitudinal rib-to-cross beam joints in an orthotropic steel deck[J]. Advances in Structural Engineering, 2008, 11(2): 189-198. doi: 10.1260/136943308784466224
    坂野昌弘, 鈴木博之, 舘石和雄. 厚板溶接継手に関する調査研究小委員会報告書[R]. 東京: 土木学会鋼構造委員会, 2007.
    张清华,崔闯,卜一之,等. 正交异性钢桥面板足尺疲劳模型试验研究[J]. 土木工程学报,2015,48(4): 72-83.

    ZHANG Qinghua, CUI Chuang, BU Yizhi, et al. Experimental study on fatigue features of orthotropic bridge deck through full-scale segment models[J]. China Civil Engineering Journal, 2015, 48(4): 72-83.
    李小珍,任伟平,卫星,等. 现代钢桥新型结构型式及其疲劳问题分析[J]. 钢结构,2006,21(5): 50-55. doi: 10.3969/j.issn.1007-9963.2006.05.013

    LI Xiaozhen, REN Weiping, WEI Xing, et al. New structural types and fatigue problems of modern steel bridge structures[J]. Steel Construction, 2006, 21(5): 50-55. doi: 10.3969/j.issn.1007-9963.2006.05.013
    刘益铭,张清华,崔闯,等. 正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J]. 中国公路学报,2016,29(7): 89-95. doi: 10.3969/j.issn.1001-7372.2016.07.011

    LIU Yiming, ZHANG Qinghua, CUI Chuang, et al. Numerical simulation methods for 3D fatigue crack growth of steel orthotropic bridge deck[J]. China Journal of Highway and Transport, 2016, 29(7): 89-95. doi: 10.3969/j.issn.1001-7372.2016.07.011
    马野,许希武,宁晋建. 整体加筋壁板裂纹扩展轨迹模拟及控制分析[J]. 固体力学学报,2009,30(3): 251-258.

    MA Ye, XU Xiwu, NING Jinjian. An analysis of crack growth simulation and crack arrest in integrally stiffened panel[J]. Chinese Journal of Solid Mechanics, 2009, 30(3): 251-258.
    童乐为,顾敏,朱俊,等. 基于断裂力学的圆钢管混凝土T型焊接节点疲劳寿命预测[J]. 工程力学,2013,30(4): 331-336.

    TONG Lewei, GU Min, ZHU Jun, et al. Prediction of fatigue life for welded T-joints of concrete-filled circular hollow sections based on fracture mechanics[J]. Engineering Mechanics, 2013, 30(4): 331-336.
    British Standards Institution. Guide to methods for assessing the acceptability of flaws in metallic structures: BS 7910—2005[S]. London: BSI Standards Limited, 2005.
    张行, 崔德渝, 孟庆春, 等. 断裂与损伤力学[M]. 北京: 北京航空航天大学出版社, 2006: 25-49.
  • Relative Articles

    [1]LIU Yiming, ZHANG Qinghua, BU Yizhi. Experimental Study and Numerical Analysis of Shear Behavior of Studs Embedded in Engineered Cementitious Composite Bridge Decks[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 35-44. doi: 10.3969/j.issn.0258-2724.20220824
    [2]YUANZHOU Zhiyuan, JI Bohai, FU Hui, MENG Cheng. Fatigue Crack Repair Mechanism and Effect by Pneumatic Impact Treatment[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 307-314. doi: 10.3969/j.issn.0258-2724.20220365
    [3]ZHANG Rui, ZHAO Ran, LIU Zhenlun, HU Peng, CHEN Kedao, LI Xi. Effects of Longitudinal Reinforcement Ratio on Flexural Capacity of One-Way Slab of UHPC Waffle Bridge Deck[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1432-1439. doi: 10.3969/j.issn.0258-2724.20210923
    [4]ZHOU Cong, LI Lifeng. Full-Range Analytical Model for Prestressed Concrete Composite Box Girders with Corrugated Steel Webs Under Pure Torsion[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 865-875. doi: 10.3969/j.issn.0258-2724.20200201
    [5]JI Wei, SHAO Tianyan. Finite Element Model Updating of Box Girder Bridges with Corrugated Steel Webs[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 1-11. doi: 10.3969/j.issn.0258-2724.20191198
    [6]ZHENG Kaifeng, HENG Junlin, HE Xiaojun, ZHANG Yu. Fatigue Performance of Orthotropic Steel Decks with Thickened Edge U-Ribs[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 694-700. doi: 10.3969/j.issn.0258-2724.20170555
    [7]HUANG Yun, ZHANG Qinghua, YU Jia, GUO Yawen, BU Yizhi. Fatigue Evaluation and Crack Propagation Characteristics of Rib-to-Deck Welded Joints in Steel Bridge Decks[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 260-268. doi: 10.3969/j.issn.0258-2724.20180129
    [8]ZHANG Qinghua, CHENG Zhenyu, LIAO Guixing, BU Yizhi, LI Qiao. Optimal Design of Corrugated Steel Deck Plate-UHPC Layer Composite Deck[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 670-678. doi: 10.3969/j.issn.0258-2724.2018.04.002
    [9]AI Changfa, XU Cheng, REN Dongya, GUO Yujin, YANG Enhui. Characterization of Vertical and Horizontal Propagations of Double Cracks in Asphalt Pavements under Moving Loads[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 128-135. doi: 10.3969/j.issn.0258-2724.2018.01.016
    [10]CUI Chuang, BU Yizhi, LI Jun, ZHANG Qinghua. Distribution Characteristics of Welding Residual Stress at U Deck-to-Rib Connection Detail of Steel Box Girder[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 260-265. doi: 10.3969/j.issn.0258-2724.2018.02.006
    [11]WU Yanbin, HUANG Fanglin. Refined Finite Element Modeling Methodof Spatial Prestressed Steel Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1082-1087. doi: 10.3969/j.issn.0258-2724.2017.06.007
    [12]WEI Xing, JIANG Su. Fatigue Life Prediction on Rib-to-Deck Welded Joints of Steel Bridge Deck Based on LEFM[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 16-22. doi: 10.3969/j.issn.0258-2724.2017.01.003
    [13]CUI Chuang, LIU Yiming, LIAO Guixing, ZHANG Qinghua, BU Yizhi. Fatigue Evaluation Approaches of Welded Joints on Orthotropic Steel Bridge Deck[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 1011-1017. doi: 10.3969/j.issn.0258-2724.2015.06.006
    [14]PU Qianhui, GAO Liqiang, LIU Zhenbiao, SHI Zhou. Fatigue Assessment of Orthotropic Steel Bridge Deck Based on Hot Spot Stress Method[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 395-401. doi: 10.3969/j.issn.0258-2724.2013.03.001
    [15]YE Huawen, XU Xun, QIANG Shizhong, HOU Suwei. Fatigue Design Parameters for Orthotropic Steel Decks of Single Plane Cable-Stayed Bridges[J]. Journal of Southwest Jiaotong University, 2012, 25(3): 379-386. doi: 10.3969/j.issn.0258-2724.2012.03.005
    [16]JIANG Jun, BO Qian-Hui, GOU Gong-Xie. Model Test for Local Stress Distribution in Anchorage Zones of Continuous Rigid Frame Composite Arch Bridge[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 726-731. doi: 10.3969/j.issn.0258-2724.2011.05.003
    [17]ZHOU Shangmeng, LI Yadong. Prediction of Biaxial Fatigue of Steel Bridge Gusset Plate Based on Stress Field Intensity Method[J]. Journal of Southwest Jiaotong University, 2011, 24(2): 217-222. doi: 10.3969/j.issn.0258-2724.2011.02.007
    [18]WANG Guang-qin, LI Xing-ren, GAO Qing. Calculation of Stress Intensity Factors for Cracked Diesel Engine Crankshafts[J]. Journal of Southwest Jiaotong University, 2002, 15(6): 655-658.
  • Cited by

    Periodical cited type(12)

    1. 张子航,袁周致远,吉伯海. 横隔板部位U肋底部开孔对其局部构造受力影响分析. 合肥工业大学学报(自然科学版). 2025(04): 570-576 .
    2. 谭金华,姜友维,苏小青,刘洋. 钢桁架桥开裂节点栓接钢板加固效果评估. 武汉理工大学学报(交通科学与工程版). 2025(02): 350-355 .
    3. 袁周致远,吉伯海,傅慧,孟城. 疲劳裂纹气动冲击的维修机理及效果. 西南交通大学学报. 2024(02): 307-314 . 本站查看
    4. 雷丙超. 焊接缝疲劳开裂对斜拉桥钢桥面板的影响及加固方式. 现代机械. 2023(02): 98-102 .
    5. 何邦,吉伯海,袁周致远,陈壮壮,汪锋. 钢箱梁横隔板弧形缺口角钢加固效果分析. 扬州大学学报(自然科学版). 2023(02): 65-72 .
    6. 蒋勇. 横隔板对钢桥面板弧形开孔疲劳应力的影响分析. 西部交通科技. 2023(02): 71-73 .
    7. 何邦,吉伯海,袁周致远,陈壮壮,汪锋. 横隔板弧形缺口疲劳开裂受力特征及加固研究. 武汉理工大学学报(交通科学与工程版). 2023(03): 528-533 .
    8. 何延兵,张海萍,李立. 钢桥面板纵肋-横隔板焊缝双裂纹协同扩展研究. 湖南交通科技. 2023(02): 94-103 .
    9. 马振忠,宋振浩,余鹏,马振芳,陈峻. 基于UHPC的疲劳开裂桥梁横隔板加固技术研究. 黑龙江交通科技. 2023(09): 132-134 .
    10. 邓扬,刘涛磊,曹宝雅,李爱群,马斌. 钢桥面顶板-U肋焊缝表贴增强板材疲劳加固方法研究. 中国公路学报. 2022(02): 201-211 .
    11. 沈翔,吉伯海,肖龙,陈欣,高天. 钢箱梁横隔板-U肋疲劳裂纹钢板加固参数分析. 科学技术与工程. 2022(34): 15245-15251 .
    12. 牛宽. 轮式装甲车体非均匀焊接裂纹修复方法. 兵器材料科学与工程. 2021(06): 107-110 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 45.6 %FULLTEXT: 45.6 %META: 51.8 %META: 51.8 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.2 %其他: 2.2 %上海: 0.5 %上海: 0.5 %临汾: 0.3 %临汾: 0.3 %佛山: 0.3 %佛山: 0.3 %北京: 3.8 %北京: 3.8 %十堰: 0.2 %十堰: 0.2 %南京: 2.1 %南京: 2.1 %南昌: 0.2 %南昌: 0.2 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.2 %哥伦布: 0.2 %唐山: 0.3 %唐山: 0.3 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %宣城: 0.2 %宣城: 0.2 %山景城: 0.3 %山景城: 0.3 %张家口: 2.7 %张家口: 2.7 %成都: 3.8 %成都: 3.8 %扬州: 0.5 %扬州: 0.5 %杭州: 1.2 %杭州: 1.2 %株洲: 0.3 %株洲: 0.3 %武汉: 0.2 %武汉: 0.2 %池州: 0.3 %池州: 0.3 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.2 %济南: 0.2 %温州: 0.2 %温州: 0.2 %湖州: 0.3 %湖州: 0.3 %漯河: 0.5 %漯河: 0.5 %石家庄: 4.5 %石家庄: 4.5 %芒廷维尤: 21.1 %芒廷维尤: 21.1 %芝加哥: 0.5 %芝加哥: 0.5 %西宁: 40.0 %西宁: 40.0 %西安: 0.3 %西安: 0.3 %贵阳: 0.7 %贵阳: 0.7 %运城: 0.9 %运城: 0.9 %郑州: 7.0 %郑州: 7.0 %重庆: 0.7 %重庆: 0.7 %长沙: 1.4 %长沙: 1.4 %阳泉: 0.2 %阳泉: 0.2 %青岛: 0.2 %青岛: 0.2 %香港: 0.3 %香港: 0.3 %黄冈: 0.2 %黄冈: 0.2 %其他上海临汾佛山北京十堰南京南昌哈尔滨哥伦布唐山大连天津宣城山景城张家口成都扬州杭州株洲武汉池州沈阳洛阳济南温州湖州漯河石家庄芒廷维尤芝加哥西宁西安贵阳运城郑州重庆长沙阳泉青岛香港黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views(665) PDF downloads(18) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return