• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 54 Issue 1
Feb.  2019
Turn off MathJax
Article Contents
SU Yi, LI Mingshui, YANG Yang, DUAN Qingsong. Buffeting Response and Equivalent Wind Load of Single Cantilever Corridor Bridge in Mountainous Areas[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 121-128. doi: 10.3969/j.issn.0258-2724.20170647
Citation: SU Yi, LI Mingshui, YANG Yang, DUAN Qingsong. Buffeting Response and Equivalent Wind Load of Single Cantilever Corridor Bridge in Mountainous Areas[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 121-128. doi: 10.3969/j.issn.0258-2724.20170647

Buffeting Response and Equivalent Wind Load of Single Cantilever Corridor Bridge in Mountainous Areas

doi: 10.3969/j.issn.0258-2724.20170647
  • Received Date: 30 Aug 2017
  • Rev Recd Date: 31 May 2018
  • Available Online: 22 Dec 2018
  • Publish Date: 01 Feb 2019
  • In order to study the buffeting response and the wind loading of a cantilevered pedestrian bridge in windy mountainous, a corridor bridge model was put in a wind tunnel to obtain its aerostatic force coefficients and buffeting responses. The maximum equivalent wind load in the transverse direction was calculated according to the bridges structural code and compared to the experimental results. The complex mountainous terrain has a significant influence on the structural aerostatic force coefficients and the buffeting responses, although neither of their maximums arises due to the general wind yaw. The structural buffeting responses increase with higher wind speeds, while are affected little by the wind attack angles in a small range. The lateral buffeting response is neither sensitive to turbulence intensity nor the turbulence integral scale. The vertical and torsional responses show an uptrend with increasing turbulence intensity, and both increase by around 15% when the turbulence intensity increases by around 40%. The vertical responses increase by about 9% if the turbulence integral scale increases by about 20%, while the lateral responses are affected little by a change in integral scale. In spite of the small influence of the turbulence integral scales on the lateral responses, the torsional responses vary greatly at different wind attack angles. At an attack angle of 3°, the torsional responses increase by around 8% with the increased integral scale, but they are influenced little by the change in integral scale at a 0° attack angle. Compared with the lateral wind loading found in the wind tunnel, the maximum equivalent calculated from the bridges structural code seems too conservative, and hence the code’s static gust factor should be further investigated.

     

  • loading
  • XIE J, HUNTER M, IRWIN P. Experimental and analytical approaches in wind engineering studies for bridges[R]. Budapest: Responding to Tomorrow’s Challenges in Structural Engineering, 2006
    项海帆. 进入21世纪的桥梁风工程研究[J]. 同济大学学报 (自然科学版),2002,30(5): 529-532

    XIANG Haifan. Study on bridge wind engineering into 21st century[J]. Journal of Tongji University (Natural Science), 2002, 30(5): 529-532
    叶征伟. 山区高墩大跨连续刚构桥风环境及风荷载研究[D]. 杭州: 浙江大学, 2012
    KOSSMANN M, VÖGTLIN R, CORSMEIER U, et al. Aspects of the convective boundary layer structure over complex terrain[J]. Atmospheric Environment, 1998, 32(7): 1323-1348 doi: 10.1016/S1352-2310(97)00271-9
    于舰涵,李明水,廖海黎. 山区地形对桥位风场影响的数值模拟[J]. 西南交通大学学报,2016,51(4): 654-662 doi: 10.3969/j.issn.0258-2724.2016.04.008

    YU Jianhan, LI Mingshui, LIAO Haili. Numerical simulation of effect of mountainous topography on wind field at bridge site[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 654-662 doi: 10.3969/j.issn.0258-2724.2016.04.008
    王凯,廖海黎,李明水,等. 山区峡谷桥梁设计基准风速的确定方法[J]. 西南交通大学学报,2013,48(1): 29-35 doi: 10.3969/j.issn.0258-2724.2013.01.005

    WANG Kai, LIAO Haili, LI Mingshui, et al. Determination method for basic design wind speed of mountainous-valley bridge[J]. Journal of Southwest Jiaotong University, 2013, 48(1): 29-35 doi: 10.3969/j.issn.0258-2724.2013.01.005
    徐洪涛. 山区峡谷风特性参数及大跨度桁梁桥风致振动研究[D]. 成都: 西南交通大学, 2009
    U.S. Department of Commerce, National Bureau of Standards. Turbulent wind effects on tension leg platform surge[S]. Washington D C: Government Printing Office, 1983
    中交公路规划设计院. 公路桥梁抗风设计规范: JTG/TD60-01—2004[S]. 北京: 人民交通出版社, 2004
    KIMURA K, TANAKA H. Bridge buffeting due to wind with yaw angles[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 42(1/2/3): 1309-1320
    ZHU L D, XU Y L. Buffeting response of long-span cable-supported bridges under skew winds, part 1:theory[J]. Journal of Sound & Vibration, 2005, 281(3/4/5): 647-673
    BARNARD R H. Wind loads on cantilevered roof structures[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1981, 8(1): 21-30
    王浩,李爱群,焦常科,等. 桥塔风效应对大跨度悬索桥抖振响应的影响[J]. 振动与冲击,2010,29(8): 103-106 doi: 10.3969/j.issn.1000-3835.2010.08.023

    WANG Hao, LI Aiqun, JIAO Changke, et al. Bridge tower wind effects on buffeting response of long-span suspension bridges[J]. Journal of Vibration and Shock, 2010, 29(8): 103-106 doi: 10.3969/j.issn.1000-3835.2010.08.023
    庞加斌,葛耀君,陆烨. 大气边界层湍流积分尺度的分析方法[J]. 同济大学学报 (自然科学版),2002,30(5): 529-532

    PANG Jiabin, GE Yaojun, LU Ye. Methods for analysis of turbulence integral length in atmospheric boundary-layer[J]. Journal of Tongji University (Natural science), 2002, 30(5): 529-532
    公路桥梁抗风设计指南编写组. 公路桥梁抗风设计指南[M]. 北京: 人民交通出版社, 1996: 24
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views(485) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return