Processing math: 100%
  • ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
DUAN Wei, CAI Guojun, LIU Songyu. Evaluation Method of Maximum Shear Modulus of Cohesionless Soil Based on State Parameters from Piezocone Penteration Test[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 801-807. doi: 10.3969/j.issn.0258-2724.20170432
Citation: DUAN Wei, CAI Guojun, LIU Songyu. Evaluation Method of Maximum Shear Modulus of Cohesionless Soil Based on State Parameters from Piezocone Penteration Test[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 801-807. doi: 10.3969/j.issn.0258-2724.20170432

Evaluation Method of Maximum Shear Modulus of Cohesionless Soil Based on State Parameters from Piezocone Penteration Test

doi: 10.3969/j.issn.0258-2724.20170432
  • Received Date: 20 Jun 2017
  • Rev Recd Date: 08 Apr 2018
  • Available Online: 18 Apr 2019
  • Publish Date: 01 Aug 2019
  • The maximum shear modulus of soil is an important parameter for dynamic design of foundations and response analysis of seismic sites. At present, this parameter is mainly determined through laboratory tests, but such tests cannot represent the real situation in the field. Thus, in situ testing technologies have attracted much attention. The Suqian-Xinji Expressway was regarded as the engineering background and seismic piezocone test (SCPTU) was conducted at the site. Based on the summary of research results for existing methods used to determine the maximum shear modulus, the relationship between the piezocone penetration test (CPTU) parameters and the maximum shear modulus was studied in terms of the reference value of the maximum shear modulus calculated using the measured shear wave velocity. The relationship between the joint CPTU parameters, state parameters, and maximum shear modulus was also analysed. The results show a good correlation between the maximum shear modulus and CPTU parameters. The maximum shear modulus value can be approximated by cone tip resistance and pore pressure parameters. The state parameter can serve as an effective alternative parameter for void ratio or pore pressure parameter ratio, and the dual factors of confining pressure and void ratio can be considered simultaneously. The estimated maximum shear modulus is the same as the reference value. Therefore, the in situ state parameters of CPTU can be used as a new method to evaluate the maximum shear modulus of cohesionless soil.

     

  • HICHER P Y. Elastic properties of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,, 1996, 122(8): 641-648.
    CAI G J, PUPPALA A J, LIU S Y. Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays[J]. Engineering Geology, 2014, 171(3): 96-103.
    TABOADA V M, ESPINOSA E, CARRASCO D, et al. Predictive equations of shear wave velocity for bay of campeche clay[C]//Offshore Technology Conference. Houston: [s.n.], 2013: 15-18
    BALDI G, BELLOTTI R, GHIONNA V N, et al. Modulus of sands from CPT and DMT[C]//Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam: [s.n.], 1989, 1: 165-170
    L’ HEUREUX J S, LONG M. Relationship between shear-wave velocity and geotechnical parameters for norwegianclays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(6): 04017013. doi: 10.1061/(ASCE)GT.1943-5606.0001645
    MAYNE P W, RIX G J. Gmax-qc relationships for clays[J]. Geotechnical Testing Journal, 1993, 16(1): 54-60. doi: 10.1520/GTJ10267J
    LUNNE T, ROBERTSON P K, POWELL J M. Cone penetration testing in geotechnical practice[M]. London: Blackie Academic and Professional, 1997: 15-18
    蔡国军,刘松玉,童立元,等. 基于SCPTU的软土最大剪切模量测试分析研究[J]. 岩土力学,2008,29(9): 2556-2560. doi: 10.3969/j.issn.1000-7598.2008.09.045

    CAI Guojun, LIU Songyu, TONG Liyuan, et al. Evaluation of maximum shear modulus of soft clay from seismic piezocone tests (SCPTU)[J]. Rock and Soil Mechanics, 2008, 29(9): 2556-2560. doi: 10.3969/j.issn.1000-7598.2008.09.045
    YANG J, LIU X. Shear wave velocity and stiffness of sand:the role of non-plastic fines[J]. Géotechnique, 2016, 66(6): 1-15.
    赵成刚,尤昌龙. 饱和砂土液化与稳态强度[J]. 土木工程学报,2001,34(3): 90-96. doi: 10.3321/j.issn:1000-131X.2001.03.016

    ZHAO Chenggang, YOU Changlong. Liquefaction and steady state strength[J]. China Civil Engineering Journal, 2001, 34(3): 90-96. doi: 10.3321/j.issn:1000-131X.2001.03.016
    YANG J. Discussion:non-uniqueness of flow liquefaction line for loose sand[J]. Géotechnique, 2004, 54(1): 66-68. doi: 10.1680/geot.2004.54.1.66
    POLOUS S J. The steady state of deformation[J]. Journal of Geotechnical Engineering Division ASCE, 1981, 107(5): 553-562.
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Geotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
    储亚,蔡国军,刘松玉. 基于CPTU原位测试状态参数的液化判别方法研究[J]. 地震工程学报,2014,36(4): 905-910. doi: 10.3969/j.issn.1000-0844.2014.04.0905

    CHU Ya, CAI Guojun, LIU Songyu. Study on liquefaction evaluation method based on CPTU in-situ state parameter[J]. Journal of Earthquake Engineering, 2014, 36(4): 905-910. doi: 10.3969/j.issn.1000-0844.2014.04.0905
    BEEN K, CROOKS J H A, JEFFERIES M G. Interpretation of material state from the CPT in sands and clays[C]//Penetration testing in the UK, Geotechnology Conference. Birmingham: [s.n.], 1989: 396-404
    ROBERTSON P K, JAMES K. Mitchell lecture: interpretation of in-situ tests-some insights[C]//Proc. 4th Int. Conf. on Geotechnical and Geophysical Site Characterization-ISC’4. London: [s.n.], 2012: 3-24
    PLEWES H D, DAVIES M P, JEFFERIES M G. CPT based screening procedure for evaluating liquefaction susceptibility[C]//Proceedings of the 45th Canadian Geotechnical Conference. Toronto: [s.n.], 1992: 1-9
    BEEN K, JEFFERIES M G. Towards systematic CPT interpretation[C]//Predictive Soil Mechanics Proceedings of the Wroth Memorial Symposium, St Catherine's College. Oxford: [s.n.], 1992: 121-134
    重庆交通科研设计院. 公路桥梁抗震设计细则: JTG/T B02-01—2008[S]. 北京: 人民交通出版社, 2008
    KU T, MAYNE P W, CARGILL E. Continuous-interval shear wave velocity profiling by auto-source and seismic piezocone tests[J]. Canadian Geotechnical Journal, 2013, 50(4): 382-390. doi: 10.1139/cgj-2012-0278
    JEFFERIES M G, BEEN K. Soil liquefaction: a critical state approach[M]. [S.l.]: Taylor & Francis, CRC Press, 2006: 5-14
    LONG M, DONOHUE S. Characterization of norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data[J]. Canadian Geotechnical Journal, 2010, 47(7): 709-718. doi: 10.1139/T09-133
    SIMONINI P, COLA S. Use of piezocone to predict maximum stiffness of venetian soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 2000, 126(4): 378-382. doi: 10.1061/(ASCE)1090-0241(2000)126:4(378)
    HARDIN B O, BLACK W L. Closure on vibration modulus of normally consolidated clay[J]. American Society of Civil Engineers, 1969, 6: 1531-1537.
    HARDIN B O. The nature of stress-strain behavior for soils[C]//In Earthquake Engineering and Soil Dynamics: Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference. New York: American Society of Civil Engineers, 1978: 3-90
    JAMIOLKOWSKI M, LEROUEIL S, LO PRESTI D C F. Theme lecture:design parameters from theory to practice[J]. Proceedings,Geo-Coast, 1991, 91: 1-41.
    RIX G J, STOKOE K H. Correlation of initial tangent modulus and cone penetration resistance[C]//International Symposium on Calibration Chamber Testing. New York: Elsevier Publishing, 1991: 351-362
    BOUCKOVALAS G, KALTEZIOTIS N, SABATAKAKIS N, et al. Shear wave velocity in a very soft clay-measurement and correlations[C]//In Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam: [s.n.], 1989: 191-194
    ANAGNOSTOPOULOS A, KOUKIS G, SABATAKAKIS N, et al. Empirical correlations of soil parameters based on cone penetration tests (CPT) for greek soils[J]. Geotechnical & Geological Engineering, 2003, 21(4): 377-387.
  • Relative Articles

    [1]CUI Kai, WANG Xiaowen, JIA Zhengpeng, WU Bohan, YUAN Ran. A Simple Generalized Method for Unified Constitutive Model of Clay and Sand[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240135
    [2]LIANG Huanwei, XU Chunrong, LIN Yu, WU Jianli, XIA Fuyou, YAN Pengfan, ZHAO Canhui. Shear and Pull-Out Performance of Ribbed Straight-Hooked Rebar Shear Connector[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240226
    [3]YANG Chengyong, MA Wenhui, FEI Teng, HAN Xueguo, CHENG Lin. Analysis of Longitudinal Deformation of Shield Tunnel Structures with Consideration of Axial Force and Shear Effect[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 139-147. doi: 10.3969/j.issn.0258-2724.20200134
    [4]JIANG Chengcheng, FAN Wen, YUAN Weina. Shear Properties of Paleosol Containing Calcareous ConcretionsBased on Ring Shear Tests[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 809-817. doi: 10.3969/j.issn.0258-2724.20190951
    [5]TIAN Guanghui, SHEN Mingrong, YANG Ruifang, ZHANG Qingzhao, WANG Zhen. Shear Rheological Characteristics and Nonlinear Constitutive Model of Serrate Structure Surface[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1017-1025. doi: 10.3969/j.issn.0258-2724.2018.05.019
    [6]WANG Jinshu, WANG Shiming, HONG Meiling, LI Yongzhi, WU Guang, LI Lin, ZHANG Jilong. Correlation Analysis between Clay Mineral Composition and Shear Strength[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1033-1038. doi: 10.3969/j.issn.0258-2724.2018.05.021
    [7]YANG Bing, LIU Yifei, WAN Fentao, YANG Tao, FENG Jun, ZHAO Xingquan, ZHENG Dongsheng. Experimental Study on Influence of Particle-Size Distribution on Permeability Coefficient of Sand[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 855-861. doi: 10.3969/j.issn.0258-2724.2016.05.006
    [8]CUI Kai, LIN Weikang. Experimental Study on Dynamic Shear Modulus and Damping Ratio for Unsaturated Mixed Soil[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 1033-1040. doi: 10.3969/j.issn.0258-2724.2016.05.028
    [9]ZHANG Julian, SHEN Mingrong, LIANG Zhirong. Experimental Study on Shear Strength Characteristics of Irregular Rock Mass Discontinuities[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 993-1000. doi: 10.3969/j.issn.0258-2724.2015.06.004
    [10]HE Hongjie, CHEN Fan, YIN Zhongke. A New Secure Digital Camera Model Based on State Parameter[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 460-466. doi: 10.3969/j.issn.0258-2724.2013.03.011
    [11]Reason for Resulting in High Direct Shearing Strength and Improvement of Loading Uni[J]. Journal of Southwest Jiaotong University, 2004, 17(4): 433-436.
  • Cited by

    Periodical cited type(4)

    1. 冯华磊,刘东明,蔡国军,段伟. 基于CPTU测试的抗拔桩承载特性评价方法. 岩石力学与工程学报. 2023(S1): 3778-3791 .
    2. 段伟,蔡国军,刘松玉,董晓强,陈瑞锋. 基于多功能CPTU测试的无黏性土状态参数评价研究. 中国公路学报. 2022(01): 200-209 .
    3. 李豪伟,边汉亮,张建伟,张旭钢. 基于多功能CPTu与CPT锥尖阻力的土体参数对比分析. 河南大学学报(自然科学版). 2021(02): 210-217 .
    4. 张明飞,魏晓刚,孙罗卡,胡照广,刘峰,孟茹. 基于弯曲元和SCPTU的剪切波速研究进展与挑战. 华南地震. 2021(03): 1-7 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views(485) PDF downloads(21) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return