• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 6
Dec.  2017
Turn off MathJax
Article Contents
CHEN Qingshan, XU Yang, HE Xingxing. Heuristic Complete Algorithm for SAT Problem by Using Logical Deduction[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.2017.06.025
Citation: CHEN Qingshan, XU Yang, HE Xingxing. Heuristic Complete Algorithm for SAT Problem by Using Logical Deduction[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1224-1232. doi: 10.3969/j.issn.0258-2724.2017.06.025

Heuristic Complete Algorithm for SAT Problem by Using Logical Deduction

doi: 10.3969/j.issn.0258-2724.2017.06.025
  • Received Date: 22 Mar 2017
  • Publish Date: 25 Dec 2017
  • In order to address the issue of branch decision-making inefficiency in solving the satisfiability problem (SAT), a heuristic complete algorithm based on logical deduction group (LDG) is proposed. Specifically, the proposed algorithm chooses the remaining unsolved clauses to make the logical deduction such that an assignment sequence of partial satisfiability is obtained, further guiding the solver to first search its solution space. For the satisfiable problem, the partial assignment can be extended group by group to a complete assignment by iteratively utilizing the deductive process. For the unsatisfiable problem, it can be straightforward to judge whether there exists an empty clause. The international competition instance in SAT is adopted for comparison with the typical exponential variable state independent decaying sum (EVSIDS) decision heuristic. The experimental results demonstrate that LDG can solve 42 more problems than EVSIDS, and achieve 22.8% and 17.8% reductions in average solution time for the satisfiable and unsatisfiable problems, respectively, as well as a 20.1% reduction in total average time.

     

  • loading
  • COOK S A. The complexity of theorem-proving procedures[C]//3rd Annual ACM Symposium on Theory of Computing. New York:ACM, 1971:151-158.
    DAVIS M, LOGEMANN G, LOVELAND D. A machine program for theoremproving[J]. Communications of the ACM, 1962, 5(7):394-397.
    MOSKEWICZ M W, MADIGAN C F, ZHAO Y. Chaff:engineering an efficient SAT solver[C]//Proceedings of the 38th Annual Design Automation Conference. New York:ACM, 2001:530-535.
    EÉN N, SÖENSSON N. An extensible SAT solver[C]//SAT 2003. Heidelberg:Springer, 2015:502-518.
    GOMES C P, SELMAN B, KAUTZ H.Boosting combinatorial search through randomization[C]//Proceeding of the Fifteenth National Conference on Artificial Intelligence. Madison:AAAI Press, 1998:431-437.
    GOLDBERG E, NOVIKOV Y.BerkMin:a fast and robust SATsolver[C]//Proceedings of Design, Automation and Test in Europe Conference. Los Alamitos:IEEE Computer Society Press, 2002:142-149.
    LEWIS M D T,SCHUBERT T, BECKER B. Speedup techniques utilized in modern SAT solvers[C]//International Conference in Theory and Applications of Satisfiability Testing. Heidelberg:Springer, 2005:437-443.
    RYAN L. Efficient algorithms for clause-learning SAT solvers[D]. Vancouver:Simon Fraser University, 2004.
    MARQUES-SILVA J P, LYNCE I, MALIK S. Conflict-driven clause learning SAT solvers[M]//In Handbook of Satisfiability. Amsterdam:IOS Press, 2009:127-149.
    MARQUES-SILVA J P, SAKALLAH K A. Grasp:a new search algorithm for satisfiability[C]//Proceedings of the 1996 IEEE/ACM International Conference onComputer-aided Design. Los Alamitos:IEEE Computer Society Press, 1996:220-227.
    BIERE A. Pico SAT essentials[J]. Journal on Satisfiability, Boolean Modeling and Computation, 2008, 4:75-97.
    AUDEMARD G, SIMON L. Glucose 2.3 in the SAT 2013 Competition[C]//Theory and Applications of Satisfiability Testing-SAT 2008. Heidelberg:Springer, 2013:42-43.
    BELOV A, DIEPOLD D, HEULE M J H, et al. SAT competition 2014 solver and benchmark descriptions. (2014-6-27)[2016-10-15]. https://helda.helsinki.fi/bitstream/handle/10138/135571/sc2014_proceedings.pdf?sequence=1.
    JEROSLOW R E, WANG J. Solving propositional satisfiability problems[J]. Annals of Mathematics and Artificial Intelligence, 1990:167-187.
    BURO M, KLEINE-BVING H.Report on a SAT competition[R]. Paderborn:University of Paderborn, 1992.
    FREEMAN J W. Improvements to propositional satisfiability search algorithms[D]. Philadelphia:University of Pennsylvania, 1995.
    LIANG J H, GANESH V,POUPART P, et al. Learning rate based branchingheuristic for SAT solvers[C]//In Theory and Applications of Satisfiability Testing-SAT 2016.[S.l.]:Springer, 2016:123-140.
    BIERE A, FROHLICH A. Evaluating CDCL variable scoring schemes[C]//In Theory and Applications of Satisfiability Testing-SAT 2015.[S.l.]:Springer, 2015:405-422.
    BIERE A. Adaptive restart strategies for conflict driven SAT solvers[C]//Theory and Applications of Satisfiability Testing-SAT 2008.Heidelberg:Springer, 2008:28-33.
    CHANGC L, LEE R C T. Symbolic logic and mechanical theorem proving[M]. New York:Academic Press, 1973:130-162.
    LOVELAND D W. A Linear Format for Resolution[M]. New York:Springer, 1970:147-162.
    LUCKHAM D. Refinements in Resolution Theory[M]. New York:Springer, 1970:163-190.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(443) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return