• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
ZHAO Yuandi, WANG Chao, LI Shanmei, ZHANG Zhaoyue. Dependable Clustering Method of Flight Trajectory in Terminal Area Based on Resampling[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 817-825,834. doi: 10.3969/j.issn.0258-2724.2017.04.022
Citation: ZHAO Yuandi, WANG Chao, LI Shanmei, ZHANG Zhaoyue. Dependable Clustering Method of Flight Trajectory in Terminal Area Based on Resampling[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 817-825,834. doi: 10.3969/j.issn.0258-2724.2017.04.022

Dependable Clustering Method of Flight Trajectory in Terminal Area Based on Resampling

doi: 10.3969/j.issn.0258-2724.2017.04.022
  • Received Date: 22 Apr 2016
  • Publish Date: 25 Aug 2017
  • To master the complex and changeable spatial distribution characteristics of air traffic flow in a terminal area accurately, and to evaluate and optimize arrival and departure procedures effectively, the cluster problem of 3D real flight trajectories in a terminal area was addressed using a resampling technique. A clustering method that has high computation speed, good expandability, and strong dependability was also proposed. First, based on resampling and principal component analysis method, projection of high-dimensional trajectory data to low dimension was implemented based on the premise of maintaining flight characteristics. Then, flight trajectory cluster analysis and outlier trajectory detection models were presented based on the MeanShift method. Finally, the proposed method was verified using real flight trajectory data of terminal areas in order to analyse the effect of every parameter on cluster results. Experimental results show that principal components having a 96.16% accumulative contribution rate can be obtained in 0.004 s. Flight trajectory data can be well approximated by the principal components. Compared with the hierarchical clustering method, the proposed method can obtain more dependable flight trajectory clustering results which correspond to the standard arrival routes. Low similarity trajectories were detected as outliers.

     

  • loading
  • 王超,韩邦村,王飞. 基于轨迹谱聚类的终端区盛行交通流识别方法[J]. 西南交通大学学报,2014,49(3): 546-552. WANG Chao, HAN Bangcun, WANG Fei. Identification of prevalent air traffic flow in terminal airspace based on trajectory spectral clustering[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 546-552.
    ATEV S, MILLER G, PAPANIKOLOPOULOS N P. Clustering of vehicle trajectories[J]. Intelligent Transportation Systems IEEE Transactions, 2010, 11(3): 647-657.
    FERREIRA N, KLOSOWSKI J T, SCHEIDEGGER C E, et al. Vector field k-means: clustering trajectories by fitting multiple vector fields[J]. Computer Graphics Forum, 2013, 32(3): 201-210.
    HU Weiming, XIE Dan, FU Zhouyu, et al. Semantic-based surveillance video retrieval[J]. IEEE Transactions on Image Processing, 2007, 16(4): 1168-1181.
    KALAYEH M M, MUSSMANN S, PETRAKOVA A, et al. Understanding trajectory behavior: a motion pattern approach[J]. Crcv.Uc.Edu, 2015: 1-14.
    LEE J, HAN J W, WANG K. Trajectory clustering: a partition and group framework[C]//The 5th ACM SIGKDD International Conference on Knowledge and Data Mining. SanDiego:[s. n. ], 2007: 593-604.
    LEE J, HAN J, LI X, et al. Traclass: trajectory classification using hierarchical region-based and trajectory-based clustering[C]//The 34th International Conference on Very Large Data Bases. Auckland.: VLDB, 2008: 1081-1094.
    LEE J, HAN J, LI X. Trajectory outlier detection: a partition-and-detect framework[C]//IEEE 24th International Conference on Data Engineering. Cancun: IEEE, 2008: 140-149.
    王超,徐肖豪,王飞. 基于航迹聚类的终端区进场程序管制适用性分析[J]. 南京航空航天大学学报,2013,45(1): 130-139. WANG Chao, XU Xiaohao, WANG Fei. ATC serviceability analysis of terminal arrival procedures using trajectory clustering[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(1): 130-139.
    王超,王明明,王飞. 基于改进的模糊C-Means航迹聚类方法研究[J]. 中国民航大学学报,2013,31(3): 14-18. WANG Chao, WANG Mingming, WANG Fei. Trajectory clustering method research based on improved fuzzy C-Means[J]. Journal of Civil Aviation University of China, 2013, 31(3): 14-18.
    王超. 飞行程序运行评估的理论方法及仿真应用研究[D]. 南京:南京航空航天大学,2012.
    董菁,张毅,张佐,等. 基于主成分分析法的城市交通路口相关性分析[J]. 西南交通大学学报,2003,38(6): 619-622. DONG Jing, ZHANG Yi, ZHANG Zuo et al. Principal component analysis of dependency of urban intersections[J]. Journal of Southwest Jiaotong University, 2003, 38(6): 619-622.
    FUKUNAGA K, HOSTETLER L D. The estimation of the gradient of a density function with applications in pattern recognition[J]. IEEE Transactions on Information Theory, 1975, 21(1): 32-40.
    CHENG Yi. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
    NIKUNJ O. Flight tracks, Northern California Tracon.[2013-03-1]. https://c3.nasa.gov/dashlink/resources /132.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(597) PDF downloads(207) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return