• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
XIA Jingxin, TAO Yumeng, JIAO Tiantian. Optimization Methods for Bidirectional Green Wave Control Based on Speed Volatility Interval[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 802-809. doi: 10.3969/j.issn.0258-2724.2017.04.020
Citation: XIA Jingxin, TAO Yumeng, JIAO Tiantian. Optimization Methods for Bidirectional Green Wave Control Based on Speed Volatility Interval[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 802-809. doi: 10.3969/j.issn.0258-2724.2017.04.020

Optimization Methods for Bidirectional Green Wave Control Based on Speed Volatility Interval

doi: 10.3969/j.issn.0258-2724.2017.04.020
  • Received Date: 21 Sep 2015
  • Publish Date: 25 Aug 2017
  • In order to overcome the drawbacks of traditional arterial signal coordination methods that apply parallel and equal green wave bandwidth and ignore the speed volatility of segments between intersections, a non-parallel and unequal green wave band representation is introduced here based on the segment speed volatility intervals. Additionally, a bidirectional green wave optimization control method was proposed. The optimization objective of the proposed method is to maximize the bandwidth of green waves between adjacent intersections so as to satisfy the traffic demands of the non-coordinated signal phases. Moreover, the relative offset between two adjacent intersections can be adjusted by constructing a maximum bandwidth model. An overlap test was used as a constraint condition to prevent the fracture of green waves, which realize the bidirectional green wave control for the arterial traffic signals. Taking Changjiang Road in Kunshan City as an example, Indexes in terms of efficiency were selected to evaluate the performance of the proposed bidirectional green wave optimization control method. Evaluation results show that the proposed method can effectively increase the green wave bandwidth by 11.8% and reduce traffic delays and vehicle queue lengths of the green wave phases by 15.34% and 10.86%, respectively, compared to the traditional green wave control method.

     

  • loading
  • 卢顺达,程琳. 非对称相位相序方式下的双向绿波协调控制图解法的优化[J]. 公路交通科技,2015,32(1): 128-132. LU Shunda, CHENG Lin. Optimization of bidirectional green wave coordinated control graphical method underasymmetric phase sequence mode[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 128-132.
    叶晓飞,羊钊,包哲宁,等. 考虑行车延误的干线协调控制信号配时数解算法[J]. 长安大学学报:自然科学版,2015,35(增刊1): 115-119. YE Xiaofei, YANG Zhao, BAO Zhening, et al. Improvement of classical algebraic method of signal timing for arterial road coordinate control considering traffic delay[J]. Journal of Chang'anUniversity: Natural Science Edition, 2015, 35(Sup.1): 115-119.
    卢凯,郑淑鉴,徐建闽,等. 面向双向不同带宽需求的绿波协调控制优化模型[J]. 交通运输工程学报,2011,11(5): 101-108. LU Kai, ZHENG Shujian, XU Jianmin, et al. Green wave coordinated control optimization models oriented to different bidirectional bandwidth demands[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 101-108.
    WONG C K, WONG S C. A lane-based optimization method for minimizing delay at isolated signal-controlled junctions[J]. Journal of Mathematical Modelling and Algorithms in Operations Research, 2003, 2(4): 379-406.
    LIU Y, CHANG G L. An arterial signal optimization model for intersections experiencing queue spillback and lane blockage[J]. Transportation Research Part C Emerging Technologies, 2011, 19(1): 130-144.
    PAPPIS C P, MAMDANI E H. A fuzzy logic controller for a trafcjunction[J]. IEEE Transactions on Systems Man Cybernetics, 1977, 7(10): 707-717.
    SHIRVANI M J, MALEKI H R. Enhanced variable bandwidth progression optimisation model in arterial traffic signal control[J]. IET Intelligent Transport Systems, 2016, 10(6): 396-405.
    沈国江,孙优贤. 城市交通干线递阶模糊控制及其神经网络实现[J]. 系统工程理论与实践,2004,24(4): 99-105. SHEN Guojiang, SUN Youxian. Hierarchical fuzzy control for urban traffic trunk roads and its neural network implementation[J]. Systems Engineering Theory and Practice, 2004, 24(4): 99-105.
    常云涛,彭国雄. 基于遗传算法的城市干道协调控制[J]. 交通运输工程学报,2003,3(2): 106-112. CHANG Yuntao, PENG Guoxiong. Urban arterial road coordinate control based on genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2003, 3(2): 106-112.
    贺冰花. 城市干线交通信号协调控制优化与仿真研究[D]. 西安:长安大学,2014.
    常玉林,张其强,张鹏. 城市干线双向绿波控制优化设计[J]. 重庆理工大学学报:自然科学版,2014,28(12): 108-112. CHANG Yulin, ZHANG Qiqiang, ZHANG Peng. Bidirectional green-wave signal control optimizationdesign of city trunk road[J]. Journal of Chongqing University of Technology: Natural Science, 2014, 28(12): 108-112.
    Transportation Research Board. HCM2010: Highway capacity manual[M]. Washington D C: Transportation Research Board, 2010: 1287-1343.
    URBANIK T, TANAKA A, LOZNER B, et al. NCHRP Report 812: Signal timing manual[M]. 2nd Ed. Washington D C: Transportation Research Board, 2015: 46-47.
    李元. 城市干线交通信号协调控制方法及优化研究[D]. 成都:西南交通大学,2014.
    李晓红. 城市干线交通信号协调优化控制及仿真[D]. 大连:大连理工大学,2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(595) PDF downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return