• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
PENG Qiyuan, FENG Liping, WEN Chao, ZHANG Xinzhu. Structural Brittleness Analysis of Information Transfer Process of High-speed Railway Train Control[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 796-801,809. doi: 10.3969/j.issn.0258-2724.2017.04.019
Citation: PENG Qiyuan, FENG Liping, WEN Chao, ZHANG Xinzhu. Structural Brittleness Analysis of Information Transfer Process of High-speed Railway Train Control[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 796-801,809. doi: 10.3969/j.issn.0258-2724.2017.04.019

Structural Brittleness Analysis of Information Transfer Process of High-speed Railway Train Control

doi: 10.3969/j.issn.0258-2724.2017.04.019
  • Received Date: 27 Jun 2016
  • Publish Date: 25 Aug 2017
  • The majority of previous studies on train control process safety focused on individual subsystems; this approach lacks wholeness and ignores the risk-sharing problem introduced by information transfer between different subsystems. Here, a three-level system, namely a computer-based interlocking system, train control system, and centralized train control system, was modelled from the perspective of information passing between subsystems, and the structural brittleness of the train control process was analysed. First, the structural brittleness of the high-speed railway train control process was stated according to brittleness sources, the brittleness propagation path, and the system crash standard. Then, a simulation platform was set up for system brittleness analysis based on the I/O file stream in CPN Tools and C# programming language, and a simulation example was designed. The results show that the average correlation between sub-transitions in the movement authority request submodel is 56.72%, and that in the CTCS-3 submodel is 9.56%; these results provide a reference for the differentiated typical safety management strategy.

     

  • loading
  • 税爽,郭进. 高铁CTCS-3级列车运行控制系统轨道电路建模与仿真[J]. 交通运输工程与信息学报,2013,11(4): 110-116. SHUI Shuang, GUO Jin. Track circuits modeling and simulation of china ctcs-3 train operation control system[J]. Journal of Transportation Engineering and Information, 2013, 11(4): 110-116.
    蔡伯根,尹青,上官伟,等. 列车运行控制系统仿真故障注入方法研究[J]. 铁道学报,2014,36(6): 55-60. CAI Baigen, YIN Qing, SHANGGUAN Wei, et al. Study on fault injection method for train control simulation system[J]. Journal of the China Railway Society, 2014, 36(6): 55-60.
    WANG H, SCHMID F, CHEN L, et al. A topology-based model for railway train control systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 819-827.
    GHAZEL M. Formalizing a subset of ERTMS/ETCS specifications for verification purposes[J]. Transportation Research Part C Emerging Technologies, 2014, 42(2): 60-75.
    王壮锋. 智能高速铁路行车指挥仿真系统的研究[D]. 北京:铁道部科学研究院,2003.
    KONTOGIANNIS T. A systems perspective of managing error recovery and tactical re-planning of operating teams in safety critical domains[J]. Journal of Safety Research, 2011, 42(42): 73-85.
    张照亮. 铁路信号计算机联锁系统的设计与实现[D]. 武汉:武汉理工大学,2011.
    万勇兵,徐中伟,梅萌. CTCS-3级列控系统临时限速服务器建模与形式化验证[J]. 系统仿真学报,2013,25(1): 132-138. WAN Yongbing, XU Zhongwei, MEI Meng. Modeling and formal verification of temporary speed restriction server for ctcs level 3[J]. Journal of System Simulation, 2013, 25(1): 132-138.
    ZHU L, YU F R, NING B, et al. Design and performance enhancements in communication-based train control systems with coordinated multipoint transmission and reception[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1258-1272.
    ZHAO J, ZHENG W. Study of fault diagnosis method based on fuzzy Bayesian network and application in CTCS-3 train control system[C]//IEEE International Conference on Intelligent Rail Transportation. Beijing: Technical Committee on Railroad System and Applications, 2013: 249-254.
    袁崇义. Petri网原理与应用[M]. 北京:电子工业出版社,2005: 285.
    张陶. 基于UML与CPN的轨旁仿真器建模及仿真[D]. 北京:北京交通大学,2012.
    吴道华. 基于着色Petri网的测试用例生成及其在列控系统中的应用[D]. 北京:北京交通大学,2010.
    WU X Y, WU X Y. Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with common cause failures[J]. Reliability Engineering System Safety, 2015, 136(136): 109-119.
    冯丽媛,姚绪梁,曹然,等. 复杂系统脆性相对熵及其在分布式系统中的应用[J]. 控制与决策,2015,30(1): 185-188. FENG Liyuan, YAO Xuliang, CAO Ran, et al. Relative entropy of complex system brittleness and its application in distributed systems[J]. Control and Decision, 2015, 30(1): 185-188.
    柳剑,张根保,李冬英,等. 基于脆性理论的多状态制造系统可靠性分析[J]. 计算机集成制造系统,2014,20(1): 155-164. LIU Jian, ZHANG Genbao, LI Dongying, et al. Reliability analysis for multi-state manufacturing system based on brittleness theory[J]. Computer Integrated Manufacturing Systems, 2014, 20(1): 155-164.
    金鸿章,韦琦,郭健. 复杂系统的脆性理论及应用[M]. 西安:西北工业大学出版社,2010: 330.
    AALST W V D, STAHL C. Modeling business processes: a petri net-oriented approach[M].: MIT Press, 2011: 5-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(585) PDF downloads(189) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return