• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 3
Jun.  2017
Turn off MathJax
Article Contents
LIANG Jun, ZHAO Tongyang, XIONG Xiaoxia, ZHANG Wanwan, CHEN Long, ZHU Ning. Design of Vehicle Acceleration Controller Based on Parallel Neural Network PID[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 626-632. doi: 10.3969/j.issn.0258-2724.2017.03.026
Citation: LIANG Jun, ZHAO Tongyang, XIONG Xiaoxia, ZHANG Wanwan, CHEN Long, ZHU Ning. Design of Vehicle Acceleration Controller Based on Parallel Neural Network PID[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 626-632. doi: 10.3969/j.issn.0258-2724.2017.03.026

Design of Vehicle Acceleration Controller Based on Parallel Neural Network PID

doi: 10.3969/j.issn.0258-2724.2017.03.026
  • Received Date: 30 Dec 2015
  • Publish Date: 25 Jun 2017
  • An acceleration control algorithm based on the parallel neural network PID (PNNPID) was proposed to conquer the problems of slow system change identification, poor dynamic performance, and slow adjustment in traditional acceleration control algorithms for adaptive cruise control (ACC). Through analysis of the shortcomings of the traditional serial neural network PID (SNNPID) for direct feedback error, an acceleration controller for vehicles that is based on the parallel control theory is developed using the self-learning function of neural network. In addition, taking into account the vehicle ride comfort, an amplitude limiting scheme of filter is designed to fit driving behavior. Experimental results show that the acceleration controller based on SNNPID can function within a maximum deviation of 0.25 m/s, and is more accurate than the controller based on PNNPID. This new acceleration controller is characterized by small average error, short adjustment time, and good transient property; and the proposed filter amplitude limiting scheme can greatly improve the ride comfort of vehicles.

     

  • loading
  • VAHIDI A, ESKANDARIAN A. Research advances in intelligent collision avoidance and adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2003, 4(3): 143-153.
    BAGESHWAR V L, GARRARD W L, RAJAMANI R. Model predictive control of transitional maneuvers for adaptive cruise control vehicles[J]. IEEE Transactions on Vehicular Technology, 2004, 53(5): 1573-1585.
    RAJAMANI R. Vehicle dynamics and control[M].[S.l.]: Springer, 2006: 5-35.
    罗莉华. 汽车自适应巡航控制及相应宏观交通流模型研究[D]. 杭州:浙江大学,2011.
    ZHAO Xiuchun, XU Guokai, ZHANG Tao, et al. Design of vehicle adaptive cruise control system based on fuzzy control[J]. Journal of Dalian Nationalities University, 2013, 15(5): 508-511.
    LIUBAKKA M K, RHODE D S, WINKELMAN J R. Adaptive automotive speed control[J]. IEEE Transactions on Automatic Control, 1996, 38(7): 1011-1020.
    VENHOVENS P, NAAB K, ADIPRASITO B. Stop and go cruise control[J]. International Journal of Automotive Technology, 2000, 1(9): 1317-1324.
    YI K, HONG J, KWON Y D. A vehicle control algorithm for stop and go cruise control[J]. Proceedings of the Institution of Mechanical Engineers, 2001,215(10): 1099-1115.
    MEHRA A, MA W L, BERG F, et al. Adaptive cruise control: Experimental validation of advanced controllers on scale-model cars[C]//American Control Conference (ACC) 2015.[S.l.]: IEEE, 2015: 1411-1418.
    侯德藻,高锋,李克强,等. 基于模型匹配方法的汽车主动避撞下位控制系统[J]. 汽车工程,2003,25(4): 399-402. HOU Dezao, GAO Feng, LI Keqiang, et al. A study on lower layer control of vehicle collision avoidance systemwi the model-match-control method[J]. Automotive Engineering, 2003, 25(4): 399-402.
    高锋. 汽车纵向运动多模型分层切换控制[D]. 北京:清华大学,2006.
    余晓江,胡学军,胡于进,等. 基于模糊神经网络的车辆间距智能自适应控制[J]. 华中科技大学学报:自然科学版,2007,35(9): 22-24. YU Xiaojiang, HU Xuejun, HU Yujin, et al. Intell igent adaptive control of the iongitudinal distancesbetween running vehicles by neural networks[J]. Journal Huazhong University o f Science Technology: Nature Science Edition, 2007, 35(9): 22-24.
    MART B H,HERREO P D. Multilayer distributed intelligent control of an autonomous car[J].Transportation Research(Part C), 2014, 39(2): 94-112.
    温希东. 自动控制原理及其应用[M]. 西安:西安电子科技大学出版社,2014: 6-18.
    梁军,沙志强,陈龙. 基于人工神经网络的驾驶行为动态集成学习算法[J]. 交通运输系统工程与信息,2012,12(2): 34-40. LIANG Jun, SHA Zhiqiang, CHEN Long. Dynamic ensemble learning algorithm for driving behaviorbased on artificial neural network[J]. Transportation Systems Engineering and Information, 2012, 12 (2): 34-40.
    孙仁云, 李治. 汽车电子感应制动模糊自整定PID参数控制[J]. 西南交通大学学报, 2010,45(3): 378-383. SUN Renyun, LI Zhi. Fuzzy self-tuning PID parameter control of automotive electronic induction braking[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 378-383.
    MUNYANEZA O, MUNYAZIKWIYE B B, KARIMI H R. Speed control design for a vehicle system using fuzzy logic and PID controller[C]//International Conference on Fuzzy Theory and ITS Applications.[S.l.]: IEEE, 2015: 56-61.
    TIDEMAN M, VERSTEEGH T, BOURS R, et al. Developing methodology for design and assessment of active and integrated safety systems for automobiles[J]. Journal Automotive Safety and Energy, 2012, 3(2): 116-122.
    SCHMIED R, WASCHL H, DEL RE L. Extension and experimental validation of fuel efficient predictive adaptive cruise control[C]//American Control Conference (ACC), 2015.[S.l.]: IEEE, 2015: 56-61.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(525) PDF downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return