• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 3
Jun.  2017
Turn off MathJax
Article Contents
DONG Changjun, LIU Shizhong, LI Aijun. Element Stiffness Matrix Analysis for Variable Curvature Curved Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 474-481. doi: 10.3969/j.issn.0258-2724.2017.03.006
Citation: DONG Changjun, LIU Shizhong, LI Aijun. Element Stiffness Matrix Analysis for Variable Curvature Curved Beam[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 474-481. doi: 10.3969/j.issn.0258-2724.2017.03.006

Element Stiffness Matrix Analysis for Variable Curvature Curved Beam

doi: 10.3969/j.issn.0258-2724.2017.03.006
  • Received Date: 22 Jun 2015
  • Publish Date: 25 Jun 2017
  • Most element stiffness matrixes are implicit functions, and hence are inconvenient to apply directly. To overcome this deficiency, assuming that the shear center of a variable-curvature curved beam coincides with its centroid, an explicit analytical solution formula for flexibility matrix of a kind of variable-curvature curved beam element with cantilever end condition is derived in polar coordinates by Castigliano's displacement theorem. First, the flexibility matrix is degraded to classical forms. Then, the stiffness matrix of the variable-curvature curved beam element with cantilever end condition is obtained by inversion of the flexibility matrix. Finally, according to conditions of static balance and arbitrariness of node displacement, the element stiffness matrix is obtained. In addition, taking a curved girder with two clamped ends as an example, comparisons are conducted between the calculation results by MATLAB program and those by ANSYS. The results show that the values of vertical displacement and torsion angle generated by MATLAB deviate from those by ANSYS within 5%, the small error between them verifying the effectiveness of the stiffness matrix in calculations of variable-curvature curved beam. What's more, elements in the matrix can be expressed as explicit functions of parameters and all the parameters can be directly referenced, which also proves the correctness of the element stiffness matrix.

     

  • loading
  • 姚玲森. 曲线梁[M]. 北京:人民交通出版社,1989:206-235.
    李惠生,张罗溪. 曲线桥梁结构分析[M]. 北京:中国铁道出版社,1992: 121-129.
    邵荣光,夏凎. 混凝土弯梁桥[M]. 北京:人民交通出版社,1994: 204-239.
    孙广华. 曲线梁桥计算[M]. 北京:人民交通出版社,1995: 7-31.
    童根树,许强. 薄壁曲梁线性和非线性分析理论[M]. 北京:科学出版社,2004: 91-102.
    吴鸿庆. 结构有限元分析[M]. 北京:中国铁道出版社,2000: 183-198.
    WANG T M, MERRILL T F. Stiffness coefficients of noncircular curved beams[J]. Journal of Structural Engineering, 1988, 114(7): 1689-1699.
    邱波. 非线性的变曲率薄壁曲梁单元[J]. 广西交通科技,1998,23(4): 18-21. QIU Bo. Nonlinear analysis of variable curvature thin-walled curved beams[J]. Guangxi Science and Technology of Communication, 1998, 23(4): 18-21.
    王银辉,陈山林. 考虑初曲率影响的变曲率箱梁空间有限元分析[J]. 中国公路学报,2007,20(6): 18-21. WANG Yinhui, CHEN Shanlin. Spatial finite element analysis for variable-curvature box girder with initial curvature[J]. China Journal of Highway and Transport, 2007, 20(6): 18-21.
    传光红,陈以一,童根树. 变截面Timoshenko梁的单元刚度矩阵[J]. 计算力学学报,2014,31(2): 265-272. CHUAN guangHong, CHEN Yiyi,TONG Genshu. Element stiffness matrix for Timoshenko beam with variable cross-section[J]. Chinese Journal of Computational Mechanics, 2014, 31(2): 265-272.
    刘铁林,赵阳,吴金国. 面内变形曲梁的显式单元刚度矩阵[J]. 沈阳建筑大学学报:自然科学版,2013,29(6): 985-988. LIU Tielin, ZHAO Yang, WU Jinguo. Explicit element stiffness matrix for curved beam with in-plane deformation[J]. Journal of Shenyang Jianzhu University: Natural Science, 2013, 29(6): 985-988.
    齐东春,沈锐利,刘章军,等. 悬索桥有限元计算的三节点空间鞍座单元[J]. 西南交通大学学报,2014,49(6): 942-947. QI Dongchun, SHEN Ruili, LIU Zhangjun, et al. 3-Node sptial saddle element for finite element calculation of suspension bridge[J]. Journal of Southwest Jiaotong University, 2014, 49(6): 942-947.
    张戎令,杨子江,朱学辉,等. 基于频率计算系杆拱桥吊杆张拉力的实用公式[J]. 西南交通大学学报,2015,50(5): 823-829. ZHANG Rongling, YANG Zijiang, ZHU Xuehui, et al. Practical formulas to calculate suspender tension based on frequency[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 823-829.
    张清华,黄灿,卜一之,等. 大跨度钢斜拉桥制造误差的传播及其效应特性[J]. 西南交通大学学报,2015,50(5): 830-837. ZHANG Qinghua, HUANG Can, BU Yizhi, et al. Fabrication error propagation properties of key components of large-span cable-stayed bridges with steel box girder[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 830-837.
    刘浪,杨万理,李乔. 深水桥梁墩水耦合抗震分析方法[J]. 西南交通大学学报,2015,50(3): 449-453. LIU Lang, YANG Wanli, LI Qiao. Seismic analysis method of deep-water bridge pier and water couplingr[J]. Journal of Southwest Jiaotong University, 2015, 50(3): 449-453.
    TSAVDARIDISK D, MELLO C. Vierendeel bending study of perforated steel beams with various novel web opening shapes through nonlinear finite-element analyses[J]. Journal of Structural Engineering, 2012, 138(10): 1214-1230.
    MOHAMADI S M, MOFID M, MCCABE S. Empirical model of the moment-rotation curve of beam-to-beam bolted flush endplate connections[J]. Journal of Structural Engineering, 2013, 139(1): 66-72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(606) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return