• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 3
Jun.  2017
Turn off MathJax
Article Contents
TI Zilong, LI Yongle, QIN Shunquan, MEI Dapeng. In-Situ Measurement and Numerical Simulation of Wave Pressure on Marine Bridge Cofferdam[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 466-473,531. doi: 10.3969/j.issn.0258-2724.2017.03.005
Citation: TI Zilong, LI Yongle, QIN Shunquan, MEI Dapeng. In-Situ Measurement and Numerical Simulation of Wave Pressure on Marine Bridge Cofferdam[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 466-473,531. doi: 10.3969/j.issn.0258-2724.2017.03.005

In-Situ Measurement and Numerical Simulation of Wave Pressure on Marine Bridge Cofferdam

doi: 10.3969/j.issn.0258-2724.2017.03.005
  • Received Date: 10 May 2016
  • Publish Date: 25 Jun 2017
  • To study the wave pressure distribution on the cofferdam under wave loads, an in-situ measurement and several numerical simulations of the wave pressure on a large-scale steel cofferdam used for construction of a marine bridge were carried out. Through the regular wave simulation of measured significant wave height based on 3D diffraction analysis and representative method, the distribution pattern of peak wave pressures along the surface of the cofferdam and along water depth was obtained and compared with the measured results. Meanwhile, the dynamic wave pressure distribution along the surface of the cofferdam was analyzed and compared with the measured values as well. The results show that the 3D diffraction analysis gives reasonable results about the pressure distribution along the cofferdam. Under the influence of wave diffraction, the peak wave pressure and peak dynamic wave pressure presents a large value at the up-wave side, while a small value at the down-wave side. The maximum difference of dynamic pressure is up to 125%. The measured pressure increases with depth of water, while the peak dynamic wave pressure decreases with depth.

     

  • loading
  • 项海帆. 21世纪世界桥梁工程的展望[J]. 土木工程学报,2000,33(3): 1-6. XIANG Haifan. Outlook of world bridge project in twenty-first century[J]. Journal of Civil Engineering, 2000, 33(3): 1-6.
    林元培,章曾焕,卢永成,等. 上海东海大桥工程总体设计[J]. 城市道桥与防洪,2004(4): 1-8. LIN Yuanpei, ZHANG Zenghuan LU Yongcheng, et al. Overall design of shanghai donghai bridge project[J]. Urban Roads Bridges Flood Control, 2004(4): 1-8.
    李国亮,刘钊,李学民,等. 杭州湾大桥南岸超长施工栈桥设计中风、浪、流荷载的确定[J]. 公路交通科技,2007,24(1): 100-103,108. LI Guoliang,LIU Zhao, LI Xuemin, et al. Design wind, wave and current load of the super long construction trestle in the South Bank of the Hangzhou Bay Bridge[J]. Journal of Highway and Transportation Research and Development, 2007, 24(1): 100-103, 108.
    张彦,李国平. 海洋环境对桥梁下部结构的影响[J]. 海岸工程,2006,25(1): 35-40. ZHANG Yan, LI Guoping. Influence of marine environment on bridge understructure[J]. Coastal Engineering, 2006, 25(1): 35-40.
    HAVELOCK T H. The pressure of water waves upon a fixed obstacle[J]. Proceedings of the Royal Society of London A, 1940, 175(963): 409-421.
    MORISON J R, JOHNSON J W, SCHAAF S A. The force exerted by surface waves on piles[J]. Journal of Petroleum Technology, 1950, 2(5): 149-154.
    MACCAMY R C, FUCHS R A. Wave forces on piles: a diffraction theory[R]. Washington D C:Corps of Engineers Washington D C Beach Erosion Board, 1954.
    SARPKAYA T, CINAR M. Hydrodynamic interference of two cylinders in harmonic flow[C]//Proceedings of Annual Offshore Technology Conference. Houston: Offshore Technology Conference, 1980: 333-340.
    俞聿修,史向宏. 不规则波作用于群桩的水动力系数[J]. 海洋学报,1996,18(2): 138-147. YU Yuxiu, SHI Xianghong. The hydrodynamic coefficient of irregular wave on piles[J]. Acta Oceanologica Sinica, 1996, 18(2): 138-147.
    祝兵,宋随弟,谭长建. 三维波浪作用下大直径圆柱绕流的数值模拟[J]. 西南交通大学学报,2012,47(2): 224-229. ZHU Bing, SONG Suidi, TAN Changjian. Numerical simulation of the flow around a large diameter cylinder under the action of three-dimensional wave[J]. Journal of Southwest Jiaotong University, 2012, 47(2): 224-229.
    康啊真,祝兵,邢帆. 基于坐标和IBM的大型圆柱波浪力数值模拟[J]. 西南交通大学学报,2014,49(2): 233-239. KANG Azhen, ZHU Bing, XING fan. Numerical simulation based on the coordinate and IBM of wave force on large cylinder[J]. Journal of Southwest Jiaotong University, 2014, 49(2): 233-239.
    靳慧,李菁,李爱群. 波浪载荷下海中观光塔铸钢节点疲劳强度验算[J]. 西南交通大学学报,2010,45(5): 692-697. JIN Hui, LI Jing, LI Aiqun. Fatigue strength of medium light tower joint checking[J]. Journal of Southwest Jiaotong University, 2010, 45(5): 692-697.
    NAKAMURA H. Wave pressures on large circular cylindrical structures[M]. Coastal Engineering 1976. 1977: 2290-2300.
    BRODTKORB P A, MYRHAUG D A, RUE H A. Joint distribution of wave height and wave crest velocity from reconstructed data with application to ringing[J]. International Journal of Offshore and Polar Engineering, 1999, 11(1): 23-32.
    俞聿修、柳淑学. 随机波浪及其工程应用[M]. 大连:大连理工大学出版社,2011: 155-160.
    王树青、梁丙臣. 海洋工程波浪力学[M]. 青岛:中国海洋大学出版社,2013: 118-120
    OUELLET Y. Effect of irregular wave trains on rubble-mound breakwaters[J]. Journal of Waterways, Harbors Coast Engineering Division, 1972, 99(NWW1): 134-135.
    合田良実. 不規則波に対する港湾構造物の設計法-6[J]. 港湾,1976,53: 47-53.
    王鉴义,章家昌,周家宝,等. 不规则波对平板护面单坡堤的波压力试验研究[J]. 海洋工程,1996,14(4): 23-30. WANG Jianyi, ZHANG Jiachang, ZHOU Jiabao, et al. Experimental study on irregular wave pressures on single slope dykes[J]. Ocean Engineering, 1996, 14(4): 23-30.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(576) PDF downloads(153) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return