• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 2
Apr.  2017
Turn off MathJax
Article Contents
JIANG Zhaoying, YU Shengwen, TAO Qiuxiang. Application of StaMPS-MTI Technology in Monitoring Ground Subsidence[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 295-302. doi: 10.3969/j.issn.0258-2724.2017.02.012
Citation: JIANG Zhaoying, YU Shengwen, TAO Qiuxiang. Application of StaMPS-MTI Technology in Monitoring Ground Subsidence[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 295-302. doi: 10.3969/j.issn.0258-2724.2017.02.012

Application of StaMPS-MTI Technology in Monitoring Ground Subsidence

doi: 10.3969/j.issn.0258-2724.2017.02.012
  • Received Date: 16 Apr 2015
  • Publish Date: 25 Apr 2017
  • In order to improve the spatial sampling rate of monitoring technologies, based on the methods of PS (permanent scatters) and SBAS (small baseline subsets), the point set of high coherence was optimally selected using StaMPS-MTI(stanford method for persistent scatterers-multi-temporal InSAR) technology, and the phase and amplitude stability of PS and SDFP(slowly-decorrelationg filtered phase) points were considered to achieve the weighted average of the pixel phases which met a given threshold. The ground subsidence and mean subsidence rate of the test area were then extracted using the deformation model of SBAS technique. PS, SBAS and StaMPS-MTI technology were respectively used to process the ground displacement data of Beijing areas from 2007 to 2010 with 29 ENVISAT ASAR images, retrieving the temporal deformation sequence and the annual mean subsidence rate. The monitored subsidence results of the test area were compared and analyzed theoretically. Theoretical results and experimental results on real SAR data show that by using StaMPS-MTI technology it can obtain 404 276 points of high coherence, and spatial sampling rate increases 62.3% compared to PS technology, and 129.4% compared to SBAS technology, which demonstrates the accuracy and reliability of monitored results.

     

  • loading
  • GABRIEL K, GOLDSTEIN M, ZEBKER H A. Mapping small elevation changes over large areas:differential radar interferometer[J]. Journal of Geophysical Research, 1989, 94(B7): 9183-9191.
    ZEBKER H A, VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geosciences and Remote Sensing, 1992, 30(5): 950-959.
    FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geosciences and Remote Sensing, 2000, 38(5): 2202-2212.
    FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geosciences and Remote Sensing, 2001, 39(1): 8-20.
    罗小军,黄丁发,刘国祥. 时序差分雷达干涉中永久散射体的自动探测[J]. 西南交通大学学报,2007,42(4): 414-418. LUO Xiaojun, HUANG Dingfa, LIU Guoxiang. Automated detection of permanent scatterers in time serial differential radar interferometry[J]. Journal of Southwest Jiaotong University, 2007, 42(4): 414-418.
    聂运菊,刘国祥,石金峰,等. 考虑干涉相位噪声的PSI组合及其沉降监测应用[J]. 西南交通大学学报,2013, 48(3): 448-454. NIE Yunju, LIU Guoxiang, SHI Jinfeng, et al. Interferometric combination for persistent scatterer interferometry considering interferometric phase noise and its application to subsidence monitoring[J]. Journal of Southwest Jiaotong University, 2013, 48(3): 448-454.
    张永红,张继贤,龚文瑜,等. 基于SAR干涉点目标分析技术的城市地表形变监测[J]. 测绘学报,2009, 38(6): 482-487. ZHANG Yonghong, ZHANG Jixian, GONG Wenyu, et al. Monitoring urban subsidence based on SAR interferometric point target analysis[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(6): 482-487.
    BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geosciences and Remote Sensing, 2002, 40(11): 2375-2383.
    PEPE A, SANSOSTI E, BERARDINO P, et al. On the generation of ERS/ENVISAT DInSARtime-series via the SBAS technique[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3): 265-269.
    CASU F, MANZO M, PEPE A, et al. SBAS-DInSAR analysis of very extended areas: first results on a 6000 km2 test site[J]. IEEE Transactions on Geosciences and Remote Sensing Letters, 2008, 5(3): 438-442.
    WU T, WANG C, ZHANG H, et al. Deformation retrieval in large areas based on multi-baseline DInSAR algorithm: a case study in Cangzhou, northern China[J]. International Journal of Remote Sensing, 2008, 29(11/12): 3633-3655.
    马德英,刘国祥,蔡国林,等. 短时空基线PS-DInSAR提取地表形变时间序列[J]. 西南交通大学学报,2009,44(1): 77-83. MA Deying, LIU Guoxiang, CAI Guolin, et al. Time series extracting of ground deformation by short spatio-temporal baseline PS-DInSAR[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 77-83.
    HOOPER A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16): 96-106.
    LANARI R, MORA M, MANUNTA M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geosciences and Remote Sensing Letters, 2004, 42(7): 1377-1386.
    LI Tao, LIU Guoxiang, LIN Hui, et al. Detecting land subsidence near metro lines in the Baoshan district of Shanghai with multi-temporal interferometric synthetic aperture radar[J]. Journal of Modern Transportation, 2014, 22(3): 137-147.
    何平,温杨茂,许才军,等. 用多时相InSAR技术研究廊坊地区地下水体积变化[J]. 武汉大学学报:信息科学版,2012, 37(10): 1181-1185. HE Ping, WEN Yangmao, XU Caijun, et al. Volume change of groundwater in Langfang region derived from muiti-temporal InSAR[J]. Geomaticis and Information Science of Wuhan University, 2012, 37(10): 1181-1185.
    SOUSA J, RUIZ A, HOOPER A, et al. Multi-temporal InSAR for deformation monitoring of the Granada and Padul faults and the surrounding area (Betic Cordillera, southern Spain)[J]. Procedia Technology, 2014, 16: 886-896.
    PATRASCU C, POPESCU A, DATCU M. SBAS and PS measurement fusion for enhancing displacement measurements[C]//IEEE International Geoscience Remote Sensing Symposium(IGARSS). [S.I.]:IEEE, 2012: 3947-3950.
    HOOPER A. Persistent scatterer radar interferometry for crustal deformation studies and modeling of volcanic deformation[D]. Palo Alto: Stanford University, 2006.
    陶秋香,刘国林. PS InSAR公共主影像优化选取的一种新方法[J]. 武汉大学学报:信息科学版,2011,26(12): 1456-1460. TAO Qiuxiang, LIU Guolin. A new method to optimize and select common master images in PS InSAR[J]. Geomaticis and Information Science of Wuhan University, 2011, 26(12): 1456-1460.
    JUST D, BAMLER R. Phase statistics of interferograms with application to synthetic-aperture radar[J]. Applied Optics, 1994, 33(20): 4361-4368.
    何庆成,刘文波,李志明. 华北平原地面沉降调查与监测[J]. 高校地质学报,2006,12(2): 195-209. HE Qingcheng, LIIU Wenbo, LI Zhiming. Land subsidence survey and monitoring in the north China plain[J]. Geoligical Journal of China Universities, 2006, 12(2): 195-209.
    李永生,张景发,李振洪,等. 利用短基线集干涉测量时序分析方法监测北京市地面沉降[J]. 武汉大学学报:信息科学版,2013, 38(11): 1374-1377. LI Yongsheng, ZHANG Jingfa, LI Zhenhong, et al. Land subsidence in Beijing city from InSAR times series analysis with small baseline subset[J]. Geomaticis and Information Science of Wuhan University, 2013, 38(11): 1374-1377.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(542) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return