• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
CAI Jing, LI Yue, SUN Qingang. Rutting Behavior of Flexible Pavement in Airport Turning Area under Temperature Field[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 186-194. doi: 10.3969/j.issn.0258-2724.2017.01.026
Citation: CAI Jing, LI Yue, SUN Qingang. Rutting Behavior of Flexible Pavement in Airport Turning Area under Temperature Field[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 186-194. doi: 10.3969/j.issn.0258-2724.2017.01.026

Rutting Behavior of Flexible Pavement in Airport Turning Area under Temperature Field

doi: 10.3969/j.issn.0258-2724.2017.01.026
  • Received Date: 09 Jan 2015
  • Publish Date: 25 Feb 2017
  • Since the lateral shearing effect of aircraft wheels during low-speed turning may aggravate the rutting defects of flexible pavement and jeopardize the driving safety, a numerical analysis model of flexible pavement structure coupled with a continuous alternating temperature field was established on the ABAQUS platform. In this model, the low speed turning performance of aircraft wheel on the ground was formulated and analyzed, and the laws of rutting formation in straight-line and turning areas of flexible pavement were compared. According to the deformation characteristics of pavement in turning area, a new evaluation index of rutting depth was proposed, whereby parametrical influences of traffic load and meteorological conditions on the rutting formation were analyzed. The results indicate that the transverse thrust of aircraft wheel load will lead to a notable lateral tensile deformation at the bottom of the pavement surface layer. The vertical stress at the loading position in the turning area is smaller than in the straight line area, which is in good accordance with the distribution of rutting depth. As the upheaval deformation at the external side of the outside wheel increases in the turning area, the upheaval deformation at the internal side of the inside wheel decreases and merges with the settlement basin together. The deformation can be reflected by the index of composite rutting depth and it presents a tendency to increase with the aircraft's turning speed, with a maximum amplification of nearly 50%. With the turning speed increasing, the accumulative action time of wheel load shortens, and the rutting depth at wheel marks decreases with a maximum amplitude of 30%. In addition, the continuous high temperature of surface layer of flexible pavement during daytime is a vital environmental reason for the rapid development of rutting formation in the initial stage. The sensitive temperature of rutting formation in the flexible pavement under study is around 30℃. The rutting deformation of the turning area can be remarkably reduced by limiting the minimum taxiing speed in high temperature conditions.

     

  • loading
  • 中国民用航空局. 中国航空运输发展年度报告[R]. 北京:中国民用航空局,2007.
    刘文. 机场沥青道面设计指标及方法研究[D]. 上海:同济大学,2008.
    边际. 基于混合交通分析的机场柔性基层沥青道面轮辙控制研究[D]. 上海:同济大学,2008.
    国际民航组织(ICAO). 附件14机场民用航空公约[S]. 芝加哥:国际民航组织(ICAO),2009.
    TITIN H. The frame work of statistical acceptance plan based on the permanent deformation potential of asphalt concrete[D]. Pennsylvania:PSU,2001.
    黄菲.沥青路面永久变形数值模拟及车辙预估[D].南京:东南大学,2006.
    谢水友,郑传超. 水平荷载对沥青路面结构的影响[J]. 长安大学学报:自然科学版,2004,24(2):14-17. XIE Shuiyou, ZHENG Chuanchao. Influence of horizontal loads on asphalt pavement structure[J]. Journal of Chang'an University:Natural Science Edition, 2004, 24(2):14-17.
    艾长发,邱延峻,毛成,等. 考虑层间状态的沥青路面温度与荷载耦合行为分析[J]. 土木工程学报,2007,40(12):99-104. AI Changfa, QIU Yanjun, MAO Cheng, et al. Simulation of the temperature and load coupling effect on asphalt pavement considering inter-layer conditions[J]. China Civil Engineering Journal, 2007, 40(12):99-104.
    刘卓,黄志义,谭真,等. 水平荷载对复合路面沥青加铺层结构的影响[J]. 公路工程,2011,36(5):57-60. LIU Zhuo, HUANG Zhiyi, TAN Zhen, et al. Influence of horizontal loads on composite pavement overlay[J]. Highway Engineering, 2011, 36(5):57-60.
    郑木莲,韩胜超,张正亮,等. 水平荷载作用下高模量沥青混凝土路面力学响应数值分析[J]. 公路,2013(9):19-24. ZHENG Mulian, HAN Shengchao, ZHANG Zhengliang, et al. Simulation of mechanical response high modulus asphalt pavement with horizontal loads[J]. Highway, 2013(9):19-24.
    翁兴中,焦明声. 机场水泥混凝土道面沥青薄层盖被起飞段的应力分析[J]. 公路,2002(10):17-19. WENG Xingzhong, JIAO Mingsheng. Stress analysisof asphalt concrete overlay on cement concrete pavement of taking off area[J]. Highway, 2002(10):17-19.
    中国民航中南机场设计研究院. MH5010-1999民用机场沥青混凝土道面设计规范[S]. 北京:中国民用航空局,2000.
    中国民用航空局飞行标准司. AC-121/135-FS-2012-45飞行品质监控(FOQA)实施与管理[S]. 北京:中国民用航空局飞行标准司,2012.
    飞机设计手册总编委会. 飞机设计手册第八册:重量平衡与控制[M]. 北京:航空工业出版社,1999:38-94
    中国民用航空局. CCAR-25-R4中国民用航空规章(第25部)运输类飞机适航标准[S]. 北京:中国民用航空局,2011.
    赵鸿铎. 适应大型飞机的沥青道面交通荷载分析方法及参数的研究[D]. 上海:同济大学,2006.
    谢来斌,张倩,李彦伟. 沥青混凝土路面温度场有限元模拟比较[J]. 公路,2013(7):38-42. XIE Laibin, ZHANG Qian, LI Yanwei. Comparison of two asphalt concrete pavement temperature field finite element simulations[J]. Highway, 2013(7):38-42.
    中交公路规划设计院. JTGD50-2006公路沥青路面设计规范[S]. 北京:中华人民共和国交通部,2006.
    李辉. 沥青路面车辙形成规律与温度场关系研究[D]. 南京:东南大学,2007.
    王勖成,邵敏. 有限单元法基本原理和数值方法[M]. 北京:清华大学出版社,2003:506-507.
    ARA. Inc. Guide for mechanistic-empirical design of new and rehabilitated pavement structures[R]. Lllinois:National Cooperative Highway Research Program, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(485) PDF downloads(245) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return