• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 30 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
CHEN Zhiwei, PU Qianhui, LI Xi, CHEN Zhiqiang, JIA Hongyu. Fragility Analysis of Large-Span Continuous Rigid Bridge Considering Wave Passage Effectt[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 23-29,37. doi: 10.3969/j.issn.0258-2724.2017.01.004
Citation: CHEN Zhiwei, PU Qianhui, LI Xi, CHEN Zhiqiang, JIA Hongyu. Fragility Analysis of Large-Span Continuous Rigid Bridge Considering Wave Passage Effectt[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 23-29,37. doi: 10.3969/j.issn.0258-2724.2017.01.004

Fragility Analysis of Large-Span Continuous Rigid Bridge Considering Wave Passage Effectt

doi: 10.3969/j.issn.0258-2724.2017.01.004
  • Received Date: 07 Apr 2016
  • Publish Date: 25 Feb 2017
  • To study wave passage effect on the fragility of the large-span continuous rigid bridge (LSCRB) in mountainous area, an actual LSCRB in southwest area was chosen as the study object. Twenty earthquake records were selected using the spectra-compatible method. Then, incremental dynamic analysis (IDA) of the bridge structure was conducted under uniform excitations and non-uniform excitations to obtain the fragility curves. The analysis results show that the relative displacements of the piers increase with the height of piers, and the relative displacement of the highest pier is around 1.03-2.81 times that of low pier, but the seismic design of low piers should be paid more attention because the damage probability of low piers is greater than that of high piers. Compared with the case under uniform excitations, the wave passage effect may reduce the probabilities of slight and moderate damages of low piers, and increase those of high piers. Furthermore the probability of extensive damage may be increased by the wave passage effect both for the low and high piers. As a result, in the seismic design of the high-pier bridges, it is necessary to consider the effect of wave passage on bridge structure, especially for the high-intensity zones.

     

  • loading
  • 宗周红,夏坚,徐绰然. 桥梁高墩抗震研究现状及展望[J]. 东南大学学报:自然科学版,2013(2):445-452. ZONG Zhouhong, XIA Jian, XU Chaoran. Seismic study of high piers of large-span bridges:an overview and research development[J]. Journal of Southeast University:Natural Science Edition, 2013(2):445-452.
    王占飞,隋伟宁. 基于性能的桥梁抗震设计理论与实践[M]. 北京:水利水电出版社,2013:32-43.
    于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨:哈尔滨工业大学,2012.
    谷音,钟华,卓卫东. 基于性能的矮塔斜拉桥结构地震易损性分析[J]. 土木工程学报,2012,45(增刊1):218-222. GU Yin, ZHONG Hua, ZHOU Weidong. Lower-tower cable-stayed bridge seismic vulnerability analysis[J]. China Civil Engineering Journal, 2012, 45(Sup.1):218-222.
    李立峰,吴文朋,胡思聪,等. 考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J]. 工程力学,2016,33(1):163-170. LI Lifeng, WU Wenpeng, HU Sicong, et al. Time-dependent seismic fragility analysis of high pier bridge based on chlorideion induced corrosion[J]. Engineering Mechanics, 2016, 33(1):163-170.
    庞于涛, 袁万城, 党新志, 等. 考虑材料劣变过程的桥梁地震易损性分析[J]. 同济大学学报:自然科学版,2013,41(3):348-354. PANG Yutao, YUAN Wancheng, DANG Xinzhi, et al. Stochastic fragility analysis of bridge with a consideration of material deterioration[J]. Journal of Tongji University:Natural Science, 2013, 41(3):348-354.
    陈静. 钢筋混凝土空心高墩桥梁地震易损性分析及抗震加固研究[D]. 北京:北京交通大学,2014.
    杨庆山. 地震地面运动及其人工合成[M]. 北京:科学出版社,2014:83-84.
    KIM S H, FENG M Q. Fragility analysis of bridges under ground motion with spatial variation[J]. International Journal of Non-linear Mechanics, 2003, 38(5):705-721.
    肖明洋. 高墩混凝土连续刚构桥地震易损性分析[D]. 成都:西南交通大学,2013.
    MENEGOTTO M. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending[C]//Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Lisbon:IABSE, 1973:15-22.
    KENT D C, PARK R. Flexural members with confined concrete[J]. Journal of the Structural Division, 1971, 97(7):1969-1990.
    MUTHUKUMAR S. A contact element approach with hysteresis damping for the analysis and design of pounding in bridges[D]. Atlanta:Georgia Institute of Technology, 2003.
    VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering Structural Dynamics, 2002, 31(3):491-514.
    PEER. Technical report for the PEER ground motion database web application[R]. Berkeley:University of California, 2010.
    SHOME N, CORNELL C A. Probabilistic seismic demand analysis of nonlinear structures[R]. Stanford:Stanford University, 1999.
    重庆交通科研设计院. JTG/T B02-01-2008公路桥梁抗震设计细则[S]. 北京:人民交通出版社,2008.
    黄志堂,强士中,崔圣爱. 钢管混凝土叠合柱高墩的概率抗震能力模型[J]. 西南交通大学学报,2015,50(5):852-857. HUANG Zhitang, QIANG Shizhong, CUI Shengai. Probabilistic seismic capacity model for high pier of CFST composite column[J]. Journal of Southwest Jiaotong University, 2015, 50(5):852-857.
    PARK Y J, ANG A H. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structure, ASCE. 1985, 111(4):722-739.
    WANG H H,刘晶波. 地震作用下钢筋混凝土桥梁结构易损性分析[J]. 土木工程学报,2004,37(6):47-51. WANG H H, LIU Jingbo. Seismic fragility analysis of reinforced concrete bridges[J]. China Civil Engineering Journal, 2004, 37(6):47-51.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(587) PDF downloads(700) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return