• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 6
Nov.  2016
Turn off MathJax
Article Contents
XU Hailiang, LI Wang, ZHAO Hongqiang, XU Shaojun. Influence of Gas Flow Resistance Loss upon Performance of Back-Reaming Pneumatic Impactor[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1198-1205. doi: 10.3969/j.issn.0258-2724.2016.06.021
Citation: XU Hailiang, LI Wang, ZHAO Hongqiang, XU Shaojun. Influence of Gas Flow Resistance Loss upon Performance of Back-Reaming Pneumatic Impactor[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1198-1205. doi: 10.3969/j.issn.0258-2724.2016.06.021

Influence of Gas Flow Resistance Loss upon Performance of Back-Reaming Pneumatic Impactor

doi: 10.3969/j.issn.0258-2724.2016.06.021
  • Received Date: 20 Jan 2015
  • Publish Date: 25 Dec 2016
  • In order to study the influence of flow resistance loss of gas upon the performance of a back-reaming pneumatic impactor, the complex gas path in the working impactor was simplified based on its structure and working principle, and the flow resistance loss of gas during the process was analyzed. Then, the changing characteristics of gas in the cavity of impactor were studied in presence of pressure loss, and a mathematical model for impactor's back-reaming operation was established. Based on the model, numerical simulations were conducted with a MATLAB program; and the pressure loss curve, the movement characteristics of piston and the law of pressure change in each cavity during the working process were obtained in presence of pressure loss. Results show that the flow resistance loss of gas will decrease the end speed of piston from 5.05 to 4.22 m/s and the impact frequency from 5.00 to 4.28 Hz, thus affecting the rock-breaking efficiency of impactor. In addition, the exhaust pressure of the impactor is only 0.140 MPa, which is lower than the designed value (0.185 MPa), leading to a poor performance of chip removal.

     

  • loading
  • LI J, ZHOU M, SI Y N, et al. Trenchless repair technology and application of urban sewer system[J]. Applied Mechanics and Materials, 2014, 470:992-997.
    侯树刚,陈静. 非开挖技术发展的研究[J]. 科技进步与对策,2003(增刊):232-233. HOU Shugang,CHEN Jin. The research of non-excavation technology's development[J]. Science Technology Progress and Policy, 2003(Sup.):232-233.
    ARIARATNAM S T, CHAN W, CHOI D. Utilization of trenchless construction methods in mainland china to sustain urban infrastructure[J]. Practice Periodical on Structural Design and Construction, 2006, 11(3):134-141.
    WOLKE R M, DEAKINS K, SUTER R L. Air drilling techniques[J]. Geothermal Resources Council Bulletin, 1990, 19(5):138-143.
    FLORIAN M, THIBAULT D, JANINE G. Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer[J]. Journal of Contaminant Hydrology, 2005, 79(3):156-164.
    徐绍军,徐大鹏,徐海良,等. 气动回扩锤的计算机仿真与优化研究[J]. 工程机械,2008(1):16-19. XU Shaojun, XU Dapeng, XU Hailiang, et al. Computer simulation and optimal research of pneumatic back reamer[J]. Construction Machinery and Equipment, 2008(1):16-19.
    张志兵,刘静,祝世平. 气动矛性能的计算机仿真研究[J]. 地质与勘探,2001,37(2):77-79. ZHANG Zhibing, LIU Jing, ZHU Shiping. Computer imitation study on the perfrmance of impact mole[J]. Geology and Prospecting, 2001, 37(2):77-79.
    王四一,孙友宏,王清岩,等. 正反气动冲击机构系统仿真分析及结构优化[J]. 吉林大学学报:地球科学版, 2011(增刊1):242-247. WANG Siyi, SHUN Youhong, WANG Qingyan, et al. System simulation and structure optimization of reversible pneumatic impact mechanism[J]. Journal of Jilin University:Earth Science Edition, 2011(Sup.1):242-247.
    江涛,李锻能. 基于仿真计算的气动潜孔冲击器性能分析[J]. 机床与液压,2010(3):101-103. JIAN Tao, LI Duanneng. Performance analysis for pneumaatic down-the-hole hammer with simulation computation[J]. Machine Tool Hydraulics, 2010(3):101-103.
    李彦明. 冲击-回转钻进工艺在超硬岩层中的应用[J]. 煤矿机械,2011,32(3):210-212. LI Yangming. Application of impact-rotary drilling technology in super hard rock[J]. Coal Mine Machinery, 2011, 32(3):210-212.
    CUI Jie. Numerical modeling of pressure losses caused by bends in pneumatic conveying pipeline[C]//Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Lake Buena Vista:, 2010:1655-1658.
    CRANE C. Flow of fluids through valves fittings and pipe[M].:Crane Technical Manual,1982:410.
    齐鄂荣,曾玉红. 工程流体力学[M]. 武汉:武汉大学出版社,2012:12.
    HOPPER W B. Calculate head loss caused by change in pipe size[J]. Chem. Eng., 1988, 12:89-92.
    HILGRAF P, MOKA M. Pressure loss in vertical sections of pneumatic conveying lines[J]. Cement International, 2012(10):52-58.
    谢安恒,高院安,周华. 高压气体系统管道流动研究与实验分析[J]. 液压与气动,2008(9):67-69. XIE Anheng, GAO Yuanan, ZHOU Hua. Pipe flow study and experimental analysis on high pressure gas system[J]. Chinese Hydraulics Pneumatics, 2008(9):67-69.
    华自强,张忠进,高青. 工程热力学[M]. 北京:高等教育出版社,2009:11.
    薛定宇,陈阳泉. 基于MATLAB/Simulink的系统仿真技术与应用[M]. 北京:清华大学出版社,2002:139-144.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(461) PDF downloads(291) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return