• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 6
Nov.  2016
Turn off MathJax
Article Contents
XIANG Huoyue, LI Yongle, SU Yang, LIAO Haili. Surrogate Model Optimizations for Protective Effects of Railway Wind Barriers[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1098-1104. doi: 10.3969/j.issn.0258-2724.2016.06.008
Citation: XIANG Huoyue, LI Yongle, SU Yang, LIAO Haili. Surrogate Model Optimizations for Protective Effects of Railway Wind Barriers[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1098-1104. doi: 10.3969/j.issn.0258-2724.2016.06.008

Surrogate Model Optimizations for Protective Effects of Railway Wind Barriers

doi: 10.3969/j.issn.0258-2724.2016.06.008
  • Received Date: 20 Apr 2015
  • Publish Date: 25 Dec 2016
  • To determine the optimal parameters of railway wind barriers, the protective effects of wind barriers were optimized by surrogate model methods. Firstly, the grid search method was improved to optimize the parameter of support vector machine regression (SVR) model, and an example was used to validate the parameter selection method. Then, the aerodynamic characteristics of a vehicle in the presence of wind barriers were considered as the objective functions, and the optimization model of the protective effects of wind barriers was presented. Lastly, according to the wind tunnel test results, the surrogate models of the objective functions were obtained by the SVR to optimize the heights and porosities of wind barriers. The results show that the modified grid search methods improve the accuracy of the parameter selections of SVR model. The optimal porosity of wind barriers is 0.00-0.17 when the wind barrier height is 1.91-2.90 m. If the height of the wind barrier is more than 2.50 m, the improvement of protective effect is limited with increase of the wind barrier height.

     

  • loading
  • COLEMAN S, BAKER C J. Reduction of accident risk for high sided road vehicles in cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 44:2685-2695.
    CHU C, CHANG C, HUANG C, et al. Windbreak protection for road vehicles against crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116:61-69.
    XIANG H Y, LI Y L, WANG B. Aerodynamic interaction between static vehicles and wind barriers on railway bridges exposed to crosswinds[J]. Wind and Structures, 2015, 20(2):237-247.
    CHARUVISIT S, KIMURA K, FUJINO Y. Effects of wind barrier on a vehicle passing in the wake of a bridge tower in cross wind and its response[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(7/8):609-639.
    HE X H, ZHOU Y F, WANG H F, et a. Aerodynamic characteristics of a trailing rail vehicles on viaduct based on still wind tunnel experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 135:22-33.
    李永乐,向活跃,廖海黎. 基于风-车-桥(线)耦合振动的风屏障防风效果研究[J]. 土木工程学报,2014,47(3):97-102. LI Yongle, XIANG Huoyue, LIAO Haili. Wind shielding effect of wind screens based on coupling vibration of wind-vehicle-bridge (lines) systems[J]. Journal of Civil Engineering, 2014, 47(3):97-102.
    XIANG H Y, LI Y L, CHEN B, et al. Protection effect of railway wind barrier on running safety of train under cross winds[J]. Advances in Structural Engineering, 2014, 17(8):1176-1187.
    张田,郭薇薇,夏禾. 侧向风作用下车桥系统气动性能及风屏障的影响研究[J]. 铁道学报,2013,35(7):102-106. ZHANG Tian, GUO Weiwei, XIA He. Aerodynamic characterisitcs of vehicle-bridge system under crosswind and effect of wind barrier[J]. Jouranl of the China Railway Society, 2013, 35(7):102-106.
    向活跃,李永乐,胡喆,等. 铁路风屏障对轨道上方风压分布影响的风洞试验研究[J]. 实验流体力学,2012,26(6):19-23. XIANG Huoyue, LI Yongle, HU Zhe, et al. Effects of wind screen on wind pressure distribution above railway tracks by wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):19-23.
    周奇,朱乐东,郭震山. 曲线风障对桥面风环境影响的数值模拟[J]. 武汉理工大学学报,2010,32(10):38-44. ZHOU Qi, ZHU Ledong, GUO Zhenshan. Numerical simulation for curve windshield barrier effects on wind environment around bridge deck[J]. Journal of Wuhan University of Technolgy, 2010, 32(10):38-44.
    向活跃,李永乐,廖海黎. 基于DEA的铁路桥梁风屏障防风效果评价[J]. 西南交通大学学报,2012,47(4):546-550. XIANG Huoyue, LI Yongle, LIAO Haili. Evaluation of wind shielding effect of wind screen for railway bridges by DEA method[J]. Journal of Southwest Jiaotong University, 2012, 47(4):546-550.
    刘凤华. 加筋土式挡风墙优化研究[J]. 铁道工程学报,2006,37(1):96-99. LIU Fenghua. Study on the optimization of wind-break wall of the reinforced concrete shape type[J]. Journal of Railwya Engineering Society, 2006, 37(1):96-99.
    姜翠香,梁习锋. 挡风墙高度和设置位置对车辆气动性能的影响[J]. 中国铁道科学,2006,27(2):66-70. JIANG Cuixiang, LIANG Xifeng. Effect of the vehicle aerodynamic performance caused by the height and position of wind-break wall[J]. China Railway Science, 2006, 27(2):66-70.
    黄尊地,梁习锋,钟睦. 基于Kriging模型的挡风墙优化设计[J]. 中南大学学报:自然科学版,2011,42(7):2152-2155. HUANG Zundi, LIANG Xifeng, ZHONG Mu. Optimization of wind-break wall based on Kriging model[J]. Journal of Central South University:Science and Technology, 2011, 42(7):2152-2155.
    KLEIJNEN J. Kriging metamodeling in simulation:a review[J]. European Journal of Operational Research, 2009, 192:707-716.
    FORRESTER A, SBESTER A, KEANE A. Engineering design via surrogate modelling:a practical guide[M].:John Wiley Sons Ltd. Publication, 2008:51-62.
    赵洪锋,单忠德,刘丰,等. 基于RSM的空心立铣刀多学科多目标优化设计[J]. 西南交通大学学报,2015,50(4):740-746. ZHAO Hongfeng, SHAN Zhongde, LIU Feng, et al. Multidisciplinary multi-objective optimization design of hollow end mill based on response surface method[J]. Journal of Southwest Jiaotong University, 2015, 50(4):740-746.
    张静,李柏林,张卫华,等. 基于Kriging模型的改进协同优化算法[J]. 西南交通大学学报,2010,45(4):539-543. ZHANG Jing, LI Bailin, ZHANG Weihua, et al. Improved collaborative optimization algorithm[J]. Journal of Southwest Jiaotong University, 2010, 45(4):539-543.
    程耿东. 工程结构优化设计基础[M]. 大连:大连理工大学出版社,2012:323-327.
    VAPNIK V. Statistical learning theory[M]. John Wiley Sons Ltd. Publication, 1998:443-462.
    GUNN S. Support vector machines for classification and regression[R].Southampton:University of Southampton, 1998.
    SMOLA A. Learning with kernels[D]. Berlin:Technische Unverisity Berlin, 1998.
    HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification[R].Taibei:University of National Taiwan, 2003.
    HUANG C L, WANG C J A. GA-based feature selection and parameters optimization for support vector machines[J]. Expert Systems with Applications, 2006, 31:231-240.
    XIANG H Y, LI Y L, WANG B, et al. Numerical simulation of the protective effect of railway wind barriers under crosswinds[J]. International Journal of Rail Transportation, 2015, 3(3):151-163.
    向活跃. 高速铁路风屏障防风效果及其自身风荷载研究[D]. 成都:西南交通大学,2013.
    叶坤,李人宪. 高速铁路挡风墙高度和距离优化分析[J]. 西南交通大学学报,2014,49(2):240-246.YE Kun, LI Renxian. Optimization analysis of height and distance of shelter wind wall for high-speed railway[J]. Journal of Southwest Jiaotong University, 2014, 49(2):240-246.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(508) PDF downloads(176) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return