• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 5
Oct.  2016
Turn off MathJax
Article Contents
YAN Guiling, WANG Hong, KANG Guozheng, DONG Xuancheng. Influence of Notch Stress Concentration on Fatigue Properties of 5083-H111 Aluminum Alloy in Very High Cycle Regime[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 944-950. doi: 10.3969/j.issn.0258-2724.2016.05.018
Citation: YAN Guiling, WANG Hong, KANG Guozheng, DONG Xuancheng. Influence of Notch Stress Concentration on Fatigue Properties of 5083-H111 Aluminum Alloy in Very High Cycle Regime[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 944-950. doi: 10.3969/j.issn.0258-2724.2016.05.018

Influence of Notch Stress Concentration on Fatigue Properties of 5083-H111 Aluminum Alloy in Very High Cycle Regime

doi: 10.3969/j.issn.0258-2724.2016.05.018
  • Received Date: 25 Nov 2015
  • Publish Date: 25 Oct 2016
  • In order to correctly evaluate the reduction and sensitivity of fatigue strength to a notch of 5083-H111 aluminum alloy specimen in very high cycle regime, very high cycle fatigue tests were carried out by ultrasonic fatigue technique at a frequency of 20 kHz, using symmetric tension-compression loading within 105-1010 cycles for hourglass-type smooth specimens and two types of notched specimens. The scanning electron microscope (SEM) was used for analysis of the fracture morphology. The experimental results show that the S-N curves exhibited an extreme platform type for the smooth specimens and a continuous decline type for the notched specimens. The fatigue performances of the 5083-H111 aluminum alloy decreased significantly because of the notch stress concentration. Most of the cracks initiated in the surface, but the fish-eye morphology was not found. The macro fatigue striation was concave for the specimen with a theoretical stress concentration factor of 1.94, and the fatigue crack sources were distributed around the fracture surface in specimens with a theoretical stress concentration factor of 2.90. The influence of notch stress concentration on fatigue properties was dependent upon the mechanism of crack initiation. Since only one kind of surface crack initiation mechanism exists in 5083-H111 aluminum alloy, the fatigue notch coefficient and notch sensitivity coefficient increase with increasing number of cycles within the range of 109.

     

  • loading
  • MATSUNAGA H, SUN C, HONG Y, et al. Dominant factors for very-high-cycle fatigue of high-strength steels and a new design method for components[J]. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38: 1274-1284.
    SAKAI T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use[J]. Journal of Solid Mechanics and Materials Engineering, 2009, 3(3): 425-439.
    MAYER H, PAPAKYRIACOU M, PIPPAN R, et al. Influence of loading frequency on the high cycle fatigue properties of AlZnMgCu1.5 aluminium alloy[J]. Materials Science and Engineering A, 2001, 314: 48-54.
    闫桂玲,王弘,康国政,等. 高速列车用6065A铝合金超高周疲劳性能试验研究[J]. 中国铁道科学,2014,35(1): 67-71. YAN Guiling, WANG Hong, KANG Guozheng, et al. Experimental study on the very high cycle fatigue properties of 6065A aluminum alloy for high speed train[J]. China Railway Science, 2014, 35(1): 67-71.
    薛红前. 超声振动载荷下材料的超高周疲劳性能研究[D]. 西安:西北工业大学,2006.
    WANG Q Y, BERARD J Y, BATHIAS C. High-cycle fatigue crack initiation and propagation behavior of high-strength spring steel wires[J]. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22: 673-677.
    MASON W P. Piezoelectric crystals and their application to ultrasonic[M]. New York: Van Nostrand, 1950: 161.
    闫桂玲. 非对称超高周疲劳实验研究[D]. 成都:西南交通大学,2005.
    王弘,高庆. 超声疲劳扭转试样谐振长度的解析法计算[J]. 西南交通大学学报,2001,36(6): 595-598. WANG Hong, GAO Qing. Analytical solution of the resonance length for ultrasonic torsional fatigue samples[J]. Journal of Southwest Jiaotong University, 2001, 36(6): 595-598.
    HONG Y, ZHAO A, QIAN G, ZHOU C. Fatigue strength and crack initiation mechanism of very-high-cycle fatigue for low alloy steels[J]. Metallurgical and Materials Transactions A, 2011, 43(8): 2753-2762.
    钟群鹏,赵子华. 断口学[M]. 北京:高等教育出版社,2006: 270-290.
    HONG Y, LEI Z, SUN C, ZHAO A. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of strength steels[J]. International Journal of Fatigue, 2014, 58: 144-151.
    陶华,薛红前. 铝合金超声疲劳行为研究[J]. 机械强度,2005,2: 236-239. TAO Hua, XUE Hongqian. Study on the ultrasonic fatigue behavior of aluminum alloys[J]. Journal of Mechanical Strength, 2005, 2: 236-239.
    徐灏. 疲劳强度[M]. 北京:高等教育出版社,1988: 480-481.
    王弘,高庆. 缺口应力集中对40Cr钢高周疲劳性能的影响[J]. 机械工程材料,2004,28(8): 12-14. WANG Hong, GAO Qing. Influence of notch concentration on the ultra-high-cycle fatigue behaviors of 40Cr steel[J]. Materials for Mechanical Engineering, 2004, 28(8): 12-14.
    王弘. 40Cr、50车轴钢超高周疲劳性能研究及疲劳机理探讨[D]. 成都:西南交通大学,2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(532) PDF downloads(233) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return