• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
MA Ming, QIAN Yongjiu, XU Baishun. Analysis of Ultimate Load-Carrying Capacity of Crescent-Shaped Concrete-Filled Steel Tube Arch Bridge[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 678-684,714. doi: 10.3969/j.issn.0258-2724.2017.04.005
Citation: LIU Chengqing, WEI Xiaodan, NI Xiangyong. Seismic Performance of Short-Pier Shear Walls:Theoretical Analysis and Numerical Simulation[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 690-696. doi: 10.3969/j.issn.0258-2724.2016.04.013

Seismic Performance of Short-Pier Shear Walls:Theoretical Analysis and Numerical Simulation

doi: 10.3969/j.issn.0258-2724.2016.04.013
  • Received Date: 03 Apr 2015
  • Publish Date: 25 Aug 2016
  • To research the seismic performance of short-pier shear walls, firstly, influences of the constraints at the edges were considered, and the theoretical calculation equations of the ultimate axial compression ratio were established based on the plane section assumption and critical reinforcement of short-pier shear walls sections, in addition, the numerical simulation was conducted to study the seismic performance of short-pier shear walls. Then the ultimate axial compression ratio was obtained by the calculation theory. through changing the axial compression ratio of numerical models, influences of the axial compression ratio on seismic performance of short-pier shear walls were analyzed when the axial compression ratio was smaller or larger than the ultimate axial compression ratio. At last, the seismic performance of short-pier shear walls with different height-thickness ratios was studied. Results show that the ratios of the calculated and test results of skeleton curves characteristic points are between 0.86 and 1.08, and the numerical simulation results have a good agreement with the test results; when the axial compression ratio of short-pier shear walls is less than the ultimate axial compression ratio, with the axial compression ratio increasing 0.1, the horizontal bearing capacity increases about 7.81%, and the ductility reduces about 4.52%; when the axial compression ratio of short-pier shear walls is more than the ultimate axial compression ratio, with the axial compression ratio increasing 0.1, the horizontal bearing capacity reduces about 5.50%, and the ductility reduces about 6.85%, the accuracy of the calculation theory for ultimate axial compression ratio is verified. In the case of equal section areas, shear walls with a big cross section height-thickness ratio can have a good seismic performance.

     

  • 中国建筑科学研究院. JGJ 3-2010高层建筑混凝土结构技术规程[S]. 北京:建筑工业出版社,2010.
    李晓蕾. 高层建筑短肢剪力墙结构的力学模型与试验研究[D]. 西安:西安建筑科技大学,2011.
    PARK Y J, REINHORN A M, KUNNATH S K. IDARC inelastic damage analysis of reinforced concrete frame-shear-wall structures[R].Buffalo:State University of New York, 1987.
    曹万林,王丽. 钢筋混凝土带暗支撑Z形截面短肢剪力墙抗震性能试验研究[J]. 世界地震工程,2004,20(3):84-89.CAO Wanlin, WANG Li. Experimental study on seismic performance of Z-shaped short pier RC shear wall with concealed bracings[J]. World Information on Earthquake Engineering, 2004, 20(3):84-89.
    程绍革,陈善阳,刘经伟. 高层建筑短肢剪力墙结构振动台试验研究[J]. 建筑科学,2000,16(1):12-16.CHENG Shaoge, CHEN Shanyang, LIU Jingwei. A shaking table test on shear wall structure with framed short pillars for high-rise buildings[J]. Building Science, 2000, 16(1):12-16.
    周云,刘自力,刘丰,等. 一字形短肢剪力墙抗震性能的模型试验研究[J]. 建筑结构学报,2008,29(4):81-88.ZHOU Yun, LIU Zili, LIU Feng, et al. Experimental study on seismic performance of the short-pier shear wall(SPW) with rectangular section[J]. Journal of Building Structures, 2008, 29(4):81-88.
    李杰,吴建营,周德源,等. L形和T形宽肢异形柱低周反复荷载试验研究[J]. 建筑结构学报,2002,23(1):9-15.LI Jie, WU Jianying, ZHOU Deyuan, et al. Experimental research on wide flange specially shaped section columns subjected to cyclic loading[J]. Journal of Building Structures, 2002, 23(1):9-15.
    PRIESTLEY M, KOWALSKY M J. Aspects of drift and ductility capacity of rectangular cantilever structural walls[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1998, 31(2):73-85.
    REINHORN A M, ROH H, SIVASELVAN M, et al. IDARC2D version 7.0:a program for the inelastic damage analysis of structures[R].Buffalo:State University of New York, 2009.
    中国建筑科学研究院. GB 50010-2010混凝土结构设计规范[S]. 2010. 北京:建筑工业出版社,2010.
    CEB-FIP Model Code. Design code 1990[S]. London:Thomas Telford, 1990.
    白亮,梁兴文. 边缘约束构件配箍特征值对剪力墙轴压比限值影响的分析[J]. 工业建筑,2009,39(4):44-48.BAI Liang, LIANG Xingwen. Influence of the characterastic value of stirrup content in boundary elements on allowable axial load ratio for concrete structural walls[J]. Industrial Construction, 2009, 39(4):44-48.
    钱稼茹,程丽荣,周栋梁. 普通箍筋约束混凝土柱的中心受压性能[J]. 清华大学学报:自然科学版,2002,42(10):1369-1373.QIAN Jiaru, CHENG Lirong, ZHOU Dongliang. Behavior of axially loaded concrete columns confined with ordinary hoops[J]. Journal of Tsinghua University:Science and Technology, 2002, 42(10):1369-1373.
    REINHORN A M, ROH H, SIVASELVAN M et al. IDARC2D version 7.0:a program for the inelastic damage analysis of structures[R]. Buffalo State:University of New York, 2009.
    韦宏,龚正为,方小丹,等. 一字形短肢剪力墙结构抗震性能试验研究[J]. 建筑结构,2010,40(3):71-74.WEI Hong, GONG Zhengwei, FANG Xiaodan, et al. Experimental research on seismic performance of short pier shear wall structure with rectangular section[J]. Building Structure, 2010, 40(3):71-74.
    SCOTT B D, PARK R, PRIESTLEY M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Journal, 1982, 79(2):13-27.
  • Relative Articles

    [1]XUE Feng, LIU Yongbo, HU Zuoan, CHEN Yifei. Railcar Traffic Distribution and Route Optimization Model Based on Dynamic Penalty Function[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 941-948, 959. doi: 10.3969/j.issn.0258-2724.20210226
    [2]XU Yongsheng, LI Lili, WU Youdi, ZHI Jinyi, XIANG Zerui, ZHANG Runzhi. Optimization Design of Interface Layout of High-Speed Railway Control Console Based on Attention Distribution[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 401-409. doi: 10.3969/j.issn.0258-2724.20200414
    [3]TIAN Yong, WAN Lili, YE Bojia, WANG Zhongfengyan. Flight Level Allocation Optimization to Reduce Greenhouse Effect[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 400-405. doi: 10.3969/j.issn.0258-2724.2018.02.025
    [4]CHEN Hao, WANG Wenxian, LI Xueqin. Routing Optimization Model and Algorithm for Out-of-Gauge Freights in Multiple Flow Railway Network[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 145-151. doi: 10.3969/j.issn.0258-2724.2016.01.021
    [5]TAN Zhengmin, PENG Qiyuan, CHEN Si, GONG Xue. Computer-Assisted Determination of Out-of-Gauge Grade of Goods Based on Space Geometry[J]. Journal of Southwest Jiaotong University, 2014, 27(1): 141-146. doi: 10.3969/j.issn.0258-2724.2014.01.022
    [6]Sun- Hong, ZHANG Pei-Wen, HONG  Yu. Fleet Planning Approach Based on Optim ized FleetCapacity Allocation in Airline Networks[J]. Journal of Southwest Jiaotong University, 2010, 23(1): 111-115. doi: 10. 3969/.j issn. 0258-2724. 2
    [7]YANG Chang-Wen, HU Meng-Hua. Robust Optimization of Aircraft Arrival and Departure Flow Allocation Based on Dynamic Capacity[J]. Journal of Southwest Jiaotong University, 2010, 23(2): 261-267. doi: 10. 3969/ j. issn. 0258-2724.
    [8]ZHANG Honghai, HU Minghua, CHEN Shilin. Collaborative Optimization of Capacity Utilization and Flow Assignment in Airport Terminal Area[J]. Journal of Southwest Jiaotong University, 2009, 22(1): 128-134.
    [9]CHEN Qun, SHI Feng, YAO Jialin, YAN Kefei. Bi-level Programming Model for Parking Assignment among Parking Lots in a Local Area[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 280-283,288.
    [10]LI Jian, LU Zhixiong, GAO Mourong. New Tabu Search Algorithm for Large-Scale Vehicle Routing Problem with Simultaneous Deliveries and Pickups[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 787-793.
    [11]TAN Xianhai, LI Minghui, JIN Weidong. Optimal Allocation of Network Resource in IntServ[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 258-263.
    [12]WANG Ruyi, WANG Ciguang, GUO Zizheng, TANG Jianqiao. Forecast of Railway Freight Ton-Kilometers Based on Semi-parametric Regression[J]. Journal of Southwest Jiaotong University, 2008, 21(1): 96-100.
    [13]LIN Chang, HUANG Qing, BU Xiangzhi. Revenue Optimization of Capacity Scheme and Allocation of Third Party Warehousing[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 320-325.
    [14]LI Bing, DU Wen. Scheduling of Single-Item Freight Transportation and Inventory[J]. Journal of Southwest Jiaotong University, 2003, 16(6): 623-628.
    [15]FENGHao, HEHong-yun, MI Zu-qiang. Nonlinear System Identification with Recurrent Neural Network Based on Genetic Algorithm[J]. Journal of Southwest Jiaotong University, 2002, 15(4): 404-407.
    [16]LI Ying-hong, WUShi-gui, PENG Qi-yuan. Network Model and Algorithm for Freight Train Marshalling Plan[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 68-71.
    [17]BU Lei, YIN Chuan-zhong, PU Yun. A Genetic and Simulated Annealing Algorithm for Optimal Sequential Casing of Less-than-Carload Freights[J]. Journal of Southwest Jiaotong University, 2002, 15(5): 531-535.
  • Cited by

    Periodical cited type(19)

    1. 冯一桐,王智勇,郭凤仪,刘殊豪,王喜利. 弓网系统滑动电接触表面磨损特征研究. 润滑与密封. 2023(06): 53-60 .
    2. 丁建明,周敬尧,江海凡. 受电弓故障的车载图像识别技术. 交通运输工程学报. 2023(03): 173-187 .
    3. 邹栋,钟舜聪,耿妍,程尧,莫志刚,徐可佳,宋兵,程斌,张士宇,王志城,华路捷,张亚楠. 城轨交通弓网系统异常磨损现状分析与防治技术研究. 机械工程学报. 2023(10): 152-178 .
    4. 许岩,陈光雄,钟传枝,杨普淼. 不同铜含量浸金属碳滑板的载流摩擦磨损性能. 润滑与密封. 2022(01): 60-66 .
    5. 范杰,刘达毅,董丙杰,陈光雄. 地铁刚性弓网系统接触线磨损特性试验研究. 润滑与密封. 2022(06): 45-51 .
    6. 黄勉,杨冰,肖守讷,魏文波,范新光,龚海勇. 地铁受电弓碳滑板表面载流磨损微观研究. 机车电传动. 2022(04): 133-139 .
    7. 刘仕兵,张怡欣,李思明. 基于SAPSO的高速铁路受电弓型面优化. 计算机仿真. 2021(07): 139-143 .
    8. 沈明学,李含欣,季德惠,熊光耀. 弓网系统载流摩擦磨损研究现状. 华东交通大学学报. 2021(04): 113-125 .
    9. 梅桂明. 刚性接触网-受电弓载流磨损性能的试验研究. 西南交通大学学报. 2021(06): 1305-1310 . 本站查看
    10. 胡艳,黄盼盼,马然. 滑动速度对碳滑板载流摩擦磨损性能的影响. 实验技术与管理. 2020(01): 87-90 .
    11. 周悦,魏文赋,高国强,吴杰,吴广宁. 弓网电接触系统滑板温升特性研究. 铁道学报. 2019(06): 74-80 .
    12. 杨文杰,王宗明,邓奇,周宁,刘久锐. 弓头悬挂结构对受电弓性能的影响分析. 机械制造. 2019(10): 46-51 .
    13. 李阳,黄鹿原. 重庆轨道交通5号线As型车双弓受流应用的研究. 铁道机车车辆. 2019(S1): 55-59 .
    14. 王蒙,郭凤仪,王智勇,陈忠华,薛一鸣. 潮湿条件下滑板磨耗特性研究. 高压电器. 2018(07): 292-296 .
    15. 吕文阁,刘少册,郑云龙,谭志忠. 基于线结构激光的侧轨受电弓磨耗视觉测量系统开发. 机车电传动. 2017(02): 114-117 .
    16. 宋冬利,江亚男,张卫华. 滑板磨耗对受电弓系统服役性能的影响研究. 西南交通大学学报. 2017(03): 450-457 . 本站查看
    17. 宋杰. 电气化铁路接触网硬点产生及防治措施. 自动化与仪器仪表. 2017(03): 140-141 .
    18. 胡艳,董丙杰,黄海,陈光雄,吴广宁,高国强. 碳滑板/接触线摩擦磨损性能. 交通运输工程学报. 2016(02): 56-63 .
    19. 杨艳. 电力机车受电弓滑板材料的发展研究. 科技经济市场. 2016(05): 90 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.6 %FULLTEXT: 30.6 %META: 69.4 %META: 69.4 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.7 %其他: 6.7 %上海: 0.3 %上海: 0.3 %东莞: 0.3 %东莞: 0.3 %内江: 0.3 %内江: 0.3 %北京: 2.7 %北京: 2.7 %南京: 0.3 %南京: 0.3 %南通: 0.3 %南通: 0.3 %合肥: 0.3 %合肥: 0.3 %哥伦布: 1.3 %哥伦布: 1.3 %嘉兴: 0.3 %嘉兴: 0.3 %天津: 2.4 %天津: 2.4 %广州: 1.3 %广州: 1.3 %张家口: 1.3 %张家口: 1.3 %成都: 0.3 %成都: 0.3 %杭州: 0.3 %杭州: 0.3 %武汉: 1.3 %武汉: 1.3 %池州: 1.3 %池州: 1.3 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济宁: 0.3 %济宁: 0.3 %温州: 0.3 %温州: 0.3 %漯河: 0.7 %漯河: 0.7 %石家庄: 0.7 %石家庄: 0.7 %耶拿: 1.3 %耶拿: 1.3 %芒廷维尤: 17.5 %芒廷维尤: 17.5 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.3 %苏州: 0.3 %西宁: 51.2 %西宁: 51.2 %邯郸: 0.3 %邯郸: 0.3 %长沙: 2.7 %长沙: 2.7 %青岛: 1.7 %青岛: 1.7 %其他上海东莞内江北京南京南通合肥哥伦布嘉兴天津广州张家口成都杭州武汉池州沈阳洛阳济宁温州漯河石家庄耶拿芒廷维尤芝加哥苏州西宁邯郸长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(609) PDF downloads(189) Cited by(23)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return