• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
ZHOU Lijun, LI Jinping, YANG Yang, JIANG Junfei, WANG Lujia, WANG Dongyang. Correlation between Winding Temperature Rise and Oil Flow in Traction Transformer[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 487-494. doi: 10.3969/j.issn.0258-2724.2016.03.008
Citation: ZHOU Lijun, LI Jinping, YANG Yang, JIANG Junfei, WANG Lujia, WANG Dongyang. Correlation between Winding Temperature Rise and Oil Flow in Traction Transformer[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 487-494. doi: 10.3969/j.issn.0258-2724.2016.03.008

Correlation between Winding Temperature Rise and Oil Flow in Traction Transformer

doi: 10.3969/j.issn.0258-2724.2016.03.008
  • Received Date: 29 Oct 2015
  • Publish Date: 25 Apr 2016
  • To clarify the dynamic relationship between winding temperature rise and flow velocity under traction loads, a special temperature rise test platform for traction transformer was set up. By the test platform the temperature of oil, the winding hot spot as well as oil flow velocity in radiator can be measured at the same time, when the test platform worked under various simulated traction loads. Then a numerical model was established, which was validated by experiment. The results show that flow velocity is proportional to the winding temperature under steady state; oil flow velocity has a shock-down process under step load, the peak of oil flow velocity is affected by load acting time and load factor, the peak time is later 10 minutes than the winding hot spot temperature; under continuous impulsive load, the temperature and velocity before impulsive load affect the absolute value of the hot spot temperature only, while have little effect on the temperature difference between copper and oil.

     

  • loading
  • RAHIMPOUR E, BARATI M, SCHAFER M. An investigation of parameters affecting the temperature rise in windings with zigzag cooling flow path[J]. Applied Thermal Engineering, 2007, 27(11/12):1923-1930.
    周利军,吴广宁,王洪亮,等. 变压器油中故障气体的复合预测方法[J]. 西南交通大学学报,2006,41(2):150-153. ZHOU Lijun, WU Guangning, WANG Hongliang, et al. Compound approach of predicting fault gases dissolved in transformer oil[J]. Journal of Southwest Jiaotong University, 2006, 41(2):150-153.
    陈伟根,苏小平,周渠,等. 基于顶层油温的变压器绕组热点温度计算改进模型[J]. 重庆大学学报,2012,35(5):69-75. CHEN Weigen, SU Xiaoping, ZHOU Qu, et al. An improved dynamic model of transformer hot spot temperature based on top oil temperature[J]. Jounral of Chongqing University, 2012, 35(5):69-75.
    ZHOU Lijun, WU Guangning, WANG Hongliang, et al. On-line monitoring technique for multi-component gases dissolved in oil of traction transformer[J]. Transactions on Electrical and Electronic Materials,2006, 7(7):361-364.
    SWIFT G, MOLINSKI T S, BRAY R, et al. A fundamental approach to transformer thermal modeling. Ⅱ. Field verification[J]. IEEE Trans on Power Delivery, 2001, 16(2):176-180.
    ZHOU Lijun, WU Guangning. Calculating temperature rise of traction transformer using heat circuit model[J]. Transactions on Electrical and Electronic Materials, 2006, 7(7):355-360.
    SUSA D, LEHTONEN M. Dynamic thermal modeling of power transformers:further development[J]. IEEE Transaction on Delivery, 2006, 21(4):1961-1980.
    SUSA D, NORDMAN H. A simple model for calculating transformer hot-spot temperature[J]. IEEE Transaction on Delivery, 2009, 24(3):1257-1265.
    韦国,闵英杰,周利军,等. V/X接线牵引变压器的温升特性[J]. 中国铁道科学,2011,32(3):80-85. WEI Guo, MIN Yingjie, ZHOU Lijun, et al. Temperature rise characteristics of V/X wiring traction transformer[J]. China Railway Science, 2011, 32(3):80-85.
    周利军,吴广宁,汤浩,等. 计算Scott牵引变压器内部温升的热路模型法[J]. 高电压技术,2007,33(3):136-139. ZHOU Lijun, WU Guangning, TANG Hao, et al. Heat circuit method for calculation temperature rise of Scott traction transformer[J]. High Voltage Engineering, 2007, 33(3):136-139.
    ZHOU Lijun, WU Guangning, YU Jianfei, et al. Thermal overshoot analysis for hot-spot temperature rise of transformer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5):1316-1322.
    NORDMAN H, RAFSBACL N, SUSA D. Temperature responses to step changes in the load current of power transformers[J]. IEEE Transaction on Delivery, 2003, 18(4):1110-1117.
    WEINLADER A, WU W, TENBOHLEN S. Prediction of the oil flow distribution in oil-immersed transformer windings by network modelling and computational fluid dynamics[J]. Electric Power Applications, 2012, 6(2):82-89.
    刘君,吴广宁,周利军,等. 变压器油纸绝缘频率响应特性影响因素[J]. 西南交通大学学报,2011,46(2):282-286. LIU Jun, WU Guangning, ZHOU Lijun, et al. Factors influencing dielectric frequency responses of oil-paper insulation[J]. Journal of Southwest Jiaotong University, 2011, 46(2):282-286.
    王永强,马伦,律方成,等. 基于有限差分和有限体积法相结合的油浸式变压器三维温度场计算[J]. 高电压技术,2014,40(10):3179-3185. WANG Yongqiang, MA Lun, LV Fangcheng. Calculation of 3D temperature field of oil immersed transformer by the combination of the finite element and finite volume method[J]. High Voltage Engineering, 2014, 40(10):3179-3185.
    苏小平,陈伟根,胡启元,等. 基于解析-数值技术的变压器绕组温度分布计算[J]. 高电压技术,2014,40(10):3164-3170. SU Xiaoping, CHEN Weigen, HU Qiyuan, et al. Calculation for transformer winding temperature distribution by numerical analytical technology[J]. High Voltage Engineering, 2014, 40(10):3164-3170.
    LIAO Caibo, RUAN Jiangjun, LIU Chao. 3D coupled electromagnetic-fluid-thermal analysis of oil-immersed triangular wound core transformer[J]. Transactions on Magnetics, 2014, 50(11):1-4.
    TENG Li, CHEN Weigen, SUN Caixin. An improved dynamic thermal circuit model of oil-immersed power transformer[J]. Power System Technology, 2012, 36(4):236-241.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(594) PDF downloads(321) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return